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meios e condições disponibilizados para a realização desta tese.
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Resumo

Nesta tese consideramos um sistema dinâmico f : M → M , onde M é uma variedade

Riemaniana e f é um difeomorfismo. Supõe-se que o sistema dinâmico tem uma estrutura

Gibbs-Markov-Young, que consiste num conjunto de referência Λ com uma estrutura de

produto hiperbólico que satisfaz certas propriedades. As propriedades que assumimos são

a existência de uma partição de Markov Λ1,Λ2, . . . de Λ, contração polinomial em folhas

estáveis, contração polinomial para trás em folhas instáveis, uma propriedade de distorção

limitada e uma certa regularidade da folheação estável.

Os objetivos principais desta tese consistem em provar resultados que estabelecem um

controlo do decaimento de correlações e dos grandes desvios, bem como apresentar um

exemplo de um sistema dinâmico que tem a estrutura Gibbs-Markov-Young descrita acima.

Para podermos apresentar estes teoremas, precisamos primeiro de introduzir o conceito de

tempo de retorno a Λ. Estes resultados fornecem controlos polinomiais do decaimento de

correlações e dos grandes desvios, baseados no controlo polinomial da medida de Lebesgue

da cauda do tempo de retorno.

Ferramentas essenciais para provar os teoremas principais são uma torre de Young,

bem como uma torre quociente e uma torre produto, obtidas a partir da torre de Young.

Recordamos alguns resultados sobre estas torres e provamos outros a partir das nossas

propriedades.

Finalmente, apresentamos um exemplo de um sistema dinâ€šmico definido no toro e

provamos que este verifica todas as propriedades da estrutura Gibbs-Markov-Young con-

siderada.





Abstract

In this thesis we consider a discrete dynamical system f : M → M , where M is a Rie-

mannian manifold and f is a diffeomorphism. We assume that the dynamical system has

a Gibbs-Markov-Young structure, which consists of a reference set Λ with a hyperbolic

product structure that satisfies certain properties. The properties assumed here are the

existence of a Markov partition Λ1,Λ2, . . . of Λ, polynomial contraction on stable leaves,

polynomial backwards contraction on unstable leaves, a bounded distortion property and

a certain regularity of the stable foliation.

The main goals of this thesis are to prove results establishing a control on the decay of

correlations and large deviations, as well as presenting an example of a dynamical system

satisfying the Gibbs-Markov-Young structure described above. In order to state these

theorems, first we need to introduce the concept of return time to Λ. These results give

polynomial controls on the decay of correlations and large deviations based on a polynomial

control on the Lebesgue measure of the tail of the return time.

Essential tools to prove the main theorems are a Young tower, as well as a quotient

tower and a tower product obtained from the Young tower. We recall some results about

these towers and prove some others based on our properties.

Finally, we present an example of a dynamical system defined on the torus and we prove

that it verifies all the properties of the Gibbs-Markov-Young structure that we considered.





Introduction

In this thesis we consider a discrete dynamical system f : M →M , where M is a manifold

and f is a diffeomorphism. If µ is an invariant probability measure, we say that f is mixing

with respect to this measure if, for any measurable sets A and B, we have

µ(f−n(A) ∩B)− µ(A)µ(B)→
n

0.

This setting will allow us to study some statistical properties of the dynamical system.

Given observables ϕ, ψ : M → R, their correlation is given by

Cn(ϕ, ψ, µ) =
∣∣∣ ∫ (ϕ ◦fn)ψ dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣.
Note that saying that f is mixing is equivalent to assuming that, for all measurable sets

A and B, the correlation of the characteristic functions of A and B converges to zero.

For sufficiently regular observables ϕ and ψ and suitable assumptions on the dynamical

system, it is possible to obtain a control on the rate of decay of their correlation.

A special case that is important to study is dynamical systems with SRB measures,

also known as physical measures. These measures were introduced by Bowen, Ruelle and

Sinai [18, 7, 16] and their importance can be understood by recalling Birkhoff’s Ergodic

Theorem. It states that, if µ is an invariant probability measure, then, for µ almost every

x ∈M and all continuous ϕ : M → R,

1

n

n−1∑
i=0

ϕ(f i(x))→
n

∫
ϕdµ.

However, this theorem does not give any guarantee on the Lebesgue measure of the set

where the above statement holds. SRB measures have the important property that this set

has positive Lebesgue measure. In this thesis we will be working with a dynamic system

with a SRB measure.



Given an observable φ : M → R, the study of large deviations consists on obtaining a

control on how much φn =
n−1∑
i=0

φ ◦f i deviates from the mean φ̄ =

∫
φ dµ. More precisely,

the aim is to study the asymptotic behaviour of

µ
{∣∣∣ 1
n
φn − φ̄

∣∣∣ > ε
}
.

Several authors have studied rates of decay of correlations in different contexts. Bowen,

Ruelle and Sinai [18, 7, 16] obtained exponential decay of correlations for uniformly hyper-

bolic diffeomorphisms. Later, some classes of non-uniformly hyperbolic diffeomorphisms

were considered. First, Young [21] proved an exponential rate for the decay of correla-

tions assuming there exists a reference set Λ ⊆M with a hyperbolic product structure and,

among other properties, an exponential contraction along stable leaves and exponential

backward contraction on unstable leaves. Later, Alves and Pinheiro [2] weakened these

assumptions, removing the backward contraction but still imposing an exponential con-

traction along stable leaves. In that paper, they proved exponential or polynomial decay

of correlations, depending on different hypothesis that we will explain later. In this thesis,

we consider a dynamical system with similar properties as in [21, 2]. However, we only

assume polynomial contraction on stable leaves and backward polynomial contraction on

unstable leaves, consequently obtaining a polynomial decay of correlations. In addition,

Young also obtained, in [22], a control on the rate of decay of correlations for non-invertible

dynamical systems and, together with Benedicks in [6], for Hénon maps.

Many authors have proved results on large deviations for uniformly hyperbolic dynam-

ical systems, some of which can be found in [15, 9, 10, 20, 19]. Later, Araújo and Pacifico,

in [5], studied large deviations for certain classes of non-uniformly expanding maps and

partially hyperbolic non-uniformly expanding diffeomorphisms. In [4], Araújo extended

these results to a more general case. Melbourne and Nicol, in [14], obtained a control on

large deviations for non-uniformly hyperbolic systems that verify certain properties, in-

cluding exponential contraction on stable leaves and exponential backward contraction on

unstable leaves. In [12], Melbourne obtained a slightly better result for large deviations.

We obtain a similar result as in [14] and [12], but with weaker conditions on the dynamical

system.

In this thesis we make extensive use of the framework developed by Young in [21, 22]

and also used in [2]. The important tools that we use are a Gibbs-Markov-Young structure

viii



defined in a reference set Λ, the return time to that reference set and a Young tower over

the same set, this last one having been introduced by Young in [21].

The Gibbs-Markov-Young structure consists of a reference set Λ with a hyperbolic prod-

uct structure that satisfies certain properties. The properties considered in each article may

vary, but the ones we consider are a Markov partition Λ1,Λ2, . . . of Λ, polynomial contrac-

tion on stable leaves, polynomial backwards contraction on unstable leaves, a bounded

distortion property and a certain regularity of the stable foliation.

The Markov partition allows us to define a return map that, in each Λi, is an iterate of

f such that all the points of Λi return to Λ by this map. The return time function is, in

each Λi, the number of iterates until this return happens.

A Young tower is a new dynamical system which is defined based on the original one

and making use of the return time function. The way this tower is defined means that

we can study this new dynamical system and transfer most of the information obtained to

the original dynamical system. We will also see that it is sufficient to study the dynamical

system in a quotient tower obtained by identifying the points in the same stable leaf. For

technical reasons, we are also going to consider a tower product and a simultaneous return

time function.

Using the tower structure, it is possible, under certain conditions, to obtain a relation

between the measure of the tail of the return time function and both the decay of correla-

tions and large deviations. Young, in [21], for systems with exponential behaviour in stable

and unstable leaves, proved exponential decay of correlations when the measure of the tail

of the return time decreases exponentially. In [22], Young also proved, for non-invertible

systems, both polynomial and exponential decay of correlations based, respectively, on

polynomial and exponential control on the tail of the return time. Alves and Pinheiro, in

[2], extended the result of [21] to a more general case, obtaining, in addition to the ex-

ponential decay of correlations, a polynomial decay of correlations assuming a polynomial

return time. As for the large deviations, Melbourne and Nicol, in [14], also obtained expo-

nential and polynomial control of large deviations, with the corresponding hypothesis on

the tail of the return time. In this thesis, as we are only assuming a polynomial behaviour

in the stable and unstable leaves, we could not expect any exponential results. In fact, we

obtain a polynomial control on both the decay of correlations and large deviations, from a

polynomial control of the tail of the return time.
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The goal of Chapter 1 is to present the two main results of this thesis, which give a

control on the decay of correlations and large deviations for a certain class of dynamical

systems. In Section 1.1 we present some basic concepts and introduce the Gibbs-Markov-

Young structure. This structure consists of the existence of a reference set Λ and the

assumption of certain properties, namely, a Markov partition for that set, polynomial con-

traction on stable leaves, polynomial backward contraction on unstable leaves, a bounded

distortion property and a certain regularity of the stable foliation. In this section we also

define the concept of return time, which will be useful throughout this thesis. In Section

1.2 we introduce the first of the main theorems which states that we can obtain polyno-

mial decay of correlations from the condition of a polynomial return time to Λ. Section

1.3 states the other main result, which gives a polynomial control on large deviations as

long as we have a polynomial return time to Λ.

Chapter 2 is concerned with the tower structure, a tool that will be essential in the

proofs of the main theorems. In Section 2.1 we introduce the Young tower, and present a

result on the diameter control of elements of a certain partition. In Section 2.2 we define

a quotient tower obtained from the tower by identifying points in the same stable leaf

and state a result that will be proved in Section 2.4. In Section 2.3 we introduce a tower

product, necessary to prove some of the results contained in Section 2.4.

Chapter 3 is divided in two sections, each one dedicated to the proof of one of the main

theorems. In section 3.2 we use the result proved in Section 2.4.

In Chapter ?? we present an example that is obtained by a perturbation of an Anosov

diffeomorphism on the torus, creating a point where the function has derivative one in both

the stable and unstable directions. We prove that this example satisfies the properties of

the Gibbs-Markov-Young structure defined in Chapter 1 and that the return time function

to a certain reference set has a polynomial behaviour. This implies, using the main results

from Chapter 1, that, for the example, there is a polynomial control on the decay of

correlations and large deviations.

In the appendix we present some basic definitions.

x
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Chapter 1

Statement of results

Let M be a finite dimensional Riemannian compact manifold, Leb be the Lebesgue measure

on the Borel sets of M and consider a diffeomorphism f : M → M . Given a submanifold

γ of M , let Lebγ denote the measure on γ induced by the restriction of the Riemannian

form to γ.

In this chapter we introduce a Gibbs-Markov-Young structure, which consists of as-

suming that f satisfies some properties on the stable and unstable leaves. We also state

our two main theorems, one about the decay of correlations and the other about large

deviations.

1.1 Gibbs-Markov-Young structures

In this section we introduce a hyperbolic product structure on a subset Λ ⊆ M . We

impose that Λ has a Markov partition and that f satisfies polynomial forward or backward

contraction on stable or unstable leaves, respectively. Additionally, we require a bounded

distortion property on unstable leaves and some regularity of the stable foliation. We would

like to point out that we are not assuming any kind of exponential contraction, forwards

or backwards.

We start by introducing the necessary concepts in order to define a hyperbolic product

structure.

Definition 1.1. An embedded disk γ ⊆M is said to be an unstable manifold if, for every



2 Statement of results

x, y ∈ γ,

d(f−n(x), f−n(y))→
n

0.

Analogously, an embedded disk γ ⊆M is a stable manifold if, for every x, y ∈ γ,

d(fn(x), fn(y))→
n

0.

Definition 1.2. We say that Γu = {γu} is a continuous family of C1 unstable manifolds if

there is a compact set Ks, a unit disk Du of some Rn and a map φu : Ks ×Du →M such

that:

(a) γu = φu({x} ×Du) is an unstable manifold;

(b) φu maps Ks ×Du homeomorphically onto its image;

(c) x → φu|{x}×Du defines a continuous map from Ks into Emb1(Du,M), where

Emb1(Du,M) denotes the space of C1 embeddings from Du into M .

Continuous families of C1 stable manifolds are defined similarly.

We can now define a hyperbolic product structure in a subset Λ of M .

Definition 1.3. We say that Λ ⊆ M has a hyperbolic product structure if there exists

a continuous family of stable manifolds Γs = {γs} and a continuous family of unstable

manifolds Γu = {γu} such that:

(a) Λ = (
⋃
γs)
⋂

(
⋃
γu);

(b) dim γs + dim γu = dimM ;

(c) each γs intersects each γu in exactly one point;

(d) stable and unstable manifolds are transversal with angles bounded away from 0.

From now on, we consider Λ ⊆M to have a hyperbolic product structure, with Γs and

Γu as their defining families.

Definition 1.4. A subset Λ1 ⊆ Λ is called an s-subset if Λ1 also has a hyperbolic product

structure and its defining families Γs1 and Γu1 can be chosen with Γs1 ⊆ Γs and Γu1 = Γu.

A subset Λ2 ⊆ Λ is called a u-subset if Λ2 also has a hyperbolic product structure and its

defining families Γs2 and Γu2 can be chosen with Γs2 = Γs and Γu2 ⊆ Γu.
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Given x ∈ Λ, denote by γ∗(x) the element of Γ∗ containing x, for ∗ ∈ {s, u}. For each

n ≥ 1 denote by (fn)u the restriction of the map fn to γu-disks, and by detD(fn)u the

Jacobian of (fn)u.

Definition 1.5. Let Λ have a hyperbolic product structure. We say that Λ has a Gibbs-

Markov-Young (GMY) structure if the properties (P0)-(P5) listed bellow hold.

(P0) Lebesgue detectable

There exists an unstable manifold γ ∈ Γu such that Lebγ(Λ ∩ γ) > 0.

(P1) Markov partition

There are pairwise disjoint s-subsets Λ1,Λ2, ... ⊆ Λ such that:

(a) Lebγ
(
(Λ\

⋃∞
i=1 Λi)

⋂
γu
)

= 0 on each γu ∈ Γu;

(b) for each i ∈ N there exists a Ri ∈ N such that fRi(Λi) is an u-subset and, for

all x ∈ Λi,

fRi(γs(x)) ⊆ γs(fRi(x)) and fRi(γu(x)) ⊇ γu(fRi(x)).

For the remaining properties we assume that C > 0, α > 1 and 0 < β < 1 are constants

depending only on f and Λ.

(P2) Polynomial contraction on stable leaves

∀ y ∈ γs(x) ∀n ∈ N d(fn(x), fn(y)) ≤ C

nα
d(x, y).

(P3) Backward polynomial contraction on unstable leaves

∀ y ∈ γu(x) ∀n ∈ N d(f−n(x), f−n(y)) ≤ C

nα
d(x, y).

We introduce a return time function R : Λ → N and a return function fR : Λ → Λ

defined for each i ∈ N as

R|Λi = Ri and fR|Λi = fRi |Λi .

For x, y ∈ Λ, let the separation time s(x, y) be defined as

s(x, y) = min
{
n ∈ N0 : (fR)n(x) and (fR)n(y) are in distinct Λi

}
.
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(P4) Bounded distortion

For γ ∈ Γu and x, y ∈ Λ ∩ γ

log
detD(fR)u(x)

detD(fR)u(y)
≤ Cβs(f

R(x),fR(y)).

(P5) Regularity of the stable foliation

For each γ, γ′ ∈ Γu, defining

Θγ′,γ : γ′ ∩ Λ → γ ∩ Λ

x 7→ γs(x) ∩ γ,

then

(a) Θ is absolutely continuous and

d(Θ∗ Lebγ′)

dLebγ
(x) =

∞∏
n=0

det Dfu(fn(x))

det Dfu(fn(Θ−1(x))
;

(b) denoting

u(x) =
d(Θ∗ Lebγ′)

dLebγ
(x),

we have

∀x, y ∈ γ′ ∩ Λ log
u(x)

u(y)
≤ Cβs(x,y).

The properties of f that we present here are related to similar properties defined in [21]

and [2]. The main difference here is that we only assume polynomial contraction on stable

leaves as opposed to the exponential contraction in those two articles. We will now go into

details over what is different about each property.

Property (P1), about the Markov partition, is the same as in [2] and is an improvement

of the corresponding property in [21].

Properties (P2) and (P3), polynomial contraction on stable leaves and backwards poly-

nomial contraction on unstable leaves, are an improvement over [21], where exponential

contraction is assumed. In [2], there is no backwards contraction assumed. However, that

article also imposes exponential contraction on stable leaves.

Properties (P4) and (P5) are the same as properties (P4) and (P3) in [2]. Our properties

(P4) and (P5) are different from the ones in [21]. However, as remarked in [2], these

properties can be deduced from (P4) and (P5) of [21].
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1.2 Decay of correlations

In this section we present one of the main results of this thesis, which establishes the decay

of correlations.

Definition 1.6. An f -invariant probability measure µ is called a Sinai-Ruelle-Bowen mea-

sure, or SRB measure, if the Lyapunov exponents of f are nonzero µ almost everywhere

and the conditional measures on local unstable manifolds are absolutely continuous with

respect to the Lebesgue measures on these manifolds.

It was proved in [21, Theorem 1] that if f has a hyperbolic structure Λ such that R is

integrable with respect to Lebγ, for some γ ∈ Γu, then f has some SRB measure µ.

Given 0 < η ≤ 1, we define the space of η-Hölder continuous functions

Hη =
{
ϕ : M → R : ∃C > 0 ∀x, y ∈M |ϕ(x)− ϕ(y)| ≤ Cd(x, y)η

}
with the seminorm

|ϕ|η = inf
{
C > 0 : ∀x, y ∈M |ϕ(x)− ϕ(y)| ≤ Cd(x, y)η

}
.

In the special case η = 1, these functions are called Lipschitz. The space Hη is a Banach

space if we consider in Hη the norm

‖ ‖η = ‖ ‖∞ + | |η.

Definition 1.7. Given n ∈ N, we define the correlation of observables ϕ, ψ ∈ Hη as

Cn(ϕ, ψ, µ) =
∣∣∣ ∫ (ϕ ◦fn)ψ dµ−

∫
ϕdµ

∫
ψ dµ

∣∣∣.
The proof of the following Theorem can be found in Section 3.1.

Theorem A. Suppose that f admits a GMY structure Λ with gcd{Ri} = 1 for which there

are γ ∈ Γu, ζ > 1 and C1 > 0 such that

Lebγ{R > n} ≤ C1

nζ
.

Then, given ϕ, ψ ∈ Hη, there exists C2 > 0 such that for every n ≥ 1

Cn(ϕ, ψ, µ) ≤ C2 max
{ 1

nζ−1
,

1

nαη

}
,

where α > 0 is the constant in (P2) and (P3).
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1.3 Large deviations

In this section we present our second main theorem, which establishes a control on large

deviations.

Definition 1.8. If µ is an ergodic probability measure and ε > 0, the large deviation at

time n of the time average of the observable φ from its spatial average is given by

LD(φ, ε, n, µ) = µ

{∣∣∣∣∣ 1n
n−1∑
i=1

φ ◦f i −
∫
φ dµ

∣∣∣∣∣ > ε

}
.

Theorem B. Suppose that f admits a GMY structure Λ with gcd{Ri} = 1 for which there

are γ ∈ Γu, ζ > 1 and C1 > 0 such that

Lebγ{R > n} ≤ C1

nζ
.

Then there are η0 > 0 and ζ0 = ζ0(η0) > 1 such that for all η > η0, 1 < ζ < ζ0, ε > 0,

p > max{1, ζ − 1} and φ ∈ Hη, there exists C2 > 0 such that for every n ≥ 1

LD(φ, ε, n, µ) ≤ C2

ε2p

1

nζ−1
.

This theorem will be proved in Section 3.2.



Chapter 2

Tower maps

In this chapter we are going to define a tower structure originally introduced by Young in

[21]. Following Young, we will also define a quotient tower and a tower product. We will

recall some necessary results and obtain improved versions of others.

2.1 Tower structure

Consider the set
⋃
n≥0

fn(Λ) and observe that it is preserved by f . In this section we introduce

an extension of the dynamical system f restricted to this set, called a tower extension of

f . We also prove a lemma that gives a control on the diameter of the elements of a certain

partition of the tower.

We define a tower by

∆ = {(x, l) : x ∈ Λ and 0 ≤ l < R(x)}

and a tower map F : ∆→ ∆ as

F (x, l) =

{
(x, l + 1) if l + 1 < R(x),

(fR(x), 0) if l + 1 = R(x).

The set

∆l = {(x, l) ∈ ∆}



8 Tower maps

is called the l-th level of the tower. There is a natural identification between ∆0, the 0-th

level of the tower, and Λ. So, we will make no distinction between them. Under this

identification we easily conclude from the definitions that FR = fR for each x ∈ ∆0. The

l-th level of the tower is a copy of the set {R > l} ⊆ ∆0.

Let P be a partition of ∆0 into subsets ∆0,i with ∆0,i = Λi for i ∈ N. We can now

define a partition on each level of the tower, ∆l, by defining its elements as

∆l,i = {(x, l) ∈ ∆l : x ∈ ∆0,i}.

So, the set Q = {∆l,i}l,i is a partition of ∆. We introduce a sequence of partitions (Qn)

of ∆ defined as follows

Q0 = Q and Qn =
n∨
i=0

F−iQ for n ∈ N. (2.1)

For each point x ∈ ∆, let Qn(x) be the element of Qn that contains that point.

Let us define a projection map

π : ∆ →
∞⋃
n=0

fn(∆0)

(x, l) 7→ f l(x)

(2.2)

and observe that f ◦ π = π ◦F .

Next, we will establish a polynomial upper bound on the diameter of the elements of

the tower partition, which will be useful later. In [2, Lemma 3.2] an exponential control is

obtained from stronger hypothesis.

Lemma 2.1. There exists C > 0 such that, for all k ∈ N and Q ∈ Q2k,

diam(πF k(Q)) ≤ C

kα
.

Proof. Take k > 0 and Q ∈ Q2k. Fixing x, y ∈ Q, there exists z = γu(x) ∩ γs(y), by the

hyperbolic structure of the dynamical system.

Choosing l such that Q ⊆ ∆l, then y0 = F−l(y) and z0 = F−l(z) are both in ∆0 and
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are in the same stable leaf. So, using (P2),

d(πF k(y), πF k(z)) = d(πF k+l(y0), πF k+l(z0))

= d(fk+l(πy0), fk+l(πz0))

≤ C

(k + l)α
d(πy0, πz0) ≤ C1

kα
,

because M is compact.

The points x0 = F−l(x) and z0 = F−l(z) are both in ∆0 and are in the same unstable

leaf. So,

d(πF k(x), πF k(z)) = d(πF k+l(x0), πF k+l(z0)) = d(fk+l(πx0), fk+l(πz0)).

Since x, z ∈ Q ∩ ∆l and Q ∈ Q2k, and because of the tower structure, each pair of

points F−i(x) and F−i(z), for i = 0, . . . , l, belongs to the same element of Q. Then

x0, z0 ∈ Q′, for some Q′ ∈ Q2k+l, which implies that F 2k+l(x0), F 2k+l(z0) ∈ ∆l′,i′ , for some

l′, i′ ∈ N. Therefore, there exists j ∈ N0 such that F 2k+l+j(x0), F 2k+l+j(z0) ∈ ∆0 and so

f 2k+l+j(πx0), f 2k+l+j(πz0) ∈ Λ. Then, using (P3) and the compactness of M ,

d(fk+l(πx0), fk+l(πz0)) = d
(
f−k−j(f 2k+l+j(πx0)), f−k−j(f 2k+l+j(πz0))

)
≤ C

(k + j)α
d
(
f 2k+l+j(πx0), f 2k+l+j(πz0)

)
≤ C1

kα
.

We can now conclude that

d(πF k(x), πF k(y)) ≤ d(πF k(y), πF k(z)) + d(πF k(x), πF k(z)) ≤ 2C1

kα
.

2.2 Quotient dynamics

We will now introduce a quotient tower, obtained from the tower by identifying points

in the same stable leaf. We are also going to present an improved version of a theorem,

originally proved by Young in [22], which gives a control on the decay of correlations for

functions defined in the quotient tower based on the measure of the tail of the return time.

Let ∼ be the equivalence relation defined on Λ by x ∼ y if y ∈ γs(x). Consider Λ̄ = Λ/∼
and the quotient tower ∆̄, whose levels are ∆̄l = ∆l/∼ and set ∆̄l,i = ∆l,i/∼. Since the
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tower map F takes γs-leaves to γs-leaves, we can define F̄ : ∆̄→ ∆̄ as the function obtained

from F by this identification. We introduce a partition of ∆̄, Q̄ = {∆̄l,i}l,i and a sequence

of partitions (Q̄n) of ∆̄, defined analogously to (2.1), as follows

Q̄0 = Q̄ and Q̄n =
n∨
i=0

F̄−iQ̄ for n ∈ N.

Since R is constant on each stable leaf and fR takes γs-leaves to γs-leaves, then the

definitions of the return time R̄ : ∆̄0 → N and the separation time s̄ : ∆̄0 × ∆̄0 → N are

naturally induced by the corresponding definitions in ∆0.

We extend the separation time s̄ to ∆̄× ∆̄ in the following way:

• if x and y belong to the same ∆̄l,i, take s̄(x, y) = s̄(x0, y0), where x0, y0 are the

corresponding elements of ∆̄0,i;

• otherwise, take s̄(x, y) = 0.

We now present an auxiliary result whose proof can be found in [2, Lemma 3.4].

Lemma 2.2. There exists a constant CF > 0 such that, given k ∈ N and x, y ∈ ∆̄ belonging

to the same element of Q̄k−1, we have∣∣∣∣JF̄ k(x)

JF̄ k(y)
− 1

∣∣∣∣ ≤ CFβ
s̄(F̄k(x),F̄k(y)).

We will define a measure m̄ on the quotient tower. To do that, we first need to define

measures mγ on each γ ∩ Λ, γ ∈ Γu. Fix γ̂ ∈ Γu and, for any given γ ∈ Γu and x ∈ γ ∩ Λ,

let x̂ be the point in γs(x) ∩ γ̂. Define

û(x) =
∞∏
n=0

det Dfu(fn(x))

det Dfu(fn(x̂))

and note that û satisfies (P5)-(b). For each γ ∈ Γu, define mγ as the measure in γ such

that
dmγ

dLebγ
= û 1γ∩Λ.

We are going to see that, if Θ = Θγ,γ′ is as defined in (P5), then

Θ∗mγ = mγ′ . (2.3)
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We will show this by verifying that the density of both measures with respect to Lebγ′

coincide. From (P5)-(a) we have

û(x′)

û(x)
=
∞∏
n=0

(
det Dfu(fn(x′))

det Dfu(fn(x̂))
· det Dfu(fn(x̂))

det Dfu(fn(x))

)
=
∞∏
n=0

det Dfu(fn(x′))

det Dfu(fn(x))
=
dΘ∗ Lebγ
dLebγ′

(x′),

and so,
dΘ∗mγ

dLebγ′
(x′) = û(x)

dΘ∗ Lebγ
dLebγ′

(x′) = û(x′) =
dΘ∗mγ′

dLebγ′
(x′),

proving what we wanted.

Define a measure m on Λ as the measure whose conditional measures on γ ∩ Λ for

γ ∈ Γu are the measures mγ. We define a measure in ∆, also denoted by m, by letting m|∆l

be induced by the natural identification of ∆l and a subset of Λ. Finally, since (2.3) holds,

we can define a measure m̄ on ∆̄ whose representative on each γ ∈ Γu is the measure mγ

defined above.

Definition 2.3. Given 0 < β < 1, we define

Fβ =
{
ϕ : ∆̄→ R : ∃Cϕ > 0 ∀x, y ∈ ∆̄ |ϕ(x)− ϕ(y)| ≤ Cϕβ

s̄(x,y)
}
,

F +
β =

{
ϕ ∈ Fβ : ∃Cϕ > 0 such that on each ∆̄l,i, either ϕ ≡ 0 or

ϕ > 0 and for all x, y ∈ ∆̄l,i

∣∣∣ϕ(x)

ϕ(y)
− 1
∣∣∣ ≤ Cϕβ

s̄(x,y)
}
.

From now on, we denote by Cϕ both the infimum of the constant in the definition of Fβ
and of F+

β with respect to ϕ. We also denote by Fβ and F+
β the analogous sets defined for

functions with domain M or ∆.

Definition 2.4. Given θ > 0, we define

Gθ =
{
ϕ : ∆̄→ R : ∃ cϕ > 0 ∀x, y ∈ ∆̄ |ϕ(x)− ϕ(y)| ≤ cϕ

max{s̄(x, y), 1}θ
}
,

G+
θ =

{
ϕ ∈ Gθ : ∃ cϕ > 0 such that on each ∆̄l,i, either ϕ ≡ 0 or

ϕ > 0 and for all x, y ∈ ∆̄l,i

∣∣∣∣ϕ(x)

ϕ(y)
− 1

∣∣∣∣ ≤ cϕ
max{s̄(x, y), 1}θ

}
.

As above, we denote by cϕ both the infimum of the constant in the definition of Gθ and

of G+
θ with respect to ϕ. The sets Gθ and G+

θ also represent the analogous sets defined for

functions with domain M or ∆.
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Now, we state a theorem that will be useful throughout this chapter and whose proof

can be found in [22, Lemma 2] and in [21, Theorem 1].

Theorem 2.5. Assume that R̄ is integrable with respect to m̄. Then

1. F̄ has a unique invariant probability measure ν̄ equivalent to m̄;

2. dν̄/dm̄ ∈ F +
β and is bounded from below by a positive constant;

3. (F̄ , ν̄) is mixing.

The next theorem is similar to [22, Theorem 3] and [2, Theorem 3.6]. Note that we only

assume that ϕ ∈ G+
θ instead of F+

β , which forces us to impose some extra assumptions.

However, if ϕ ∈ F+
β we obtain the original result.

Theorem 2.6. Let K be as defined in (2.4), assume that θ > 2eK and 1 < ζ < θ
eK
− 1.

Take ϕ ∈ G+
θ and let λ̄ be the measure whose density with respect to m̄ is ϕ. Given C > 0,

there exists C ′ > 0, depending only on cϕ, such that

m̄{R̄ > n} ≤ C

nζ
⇒

∣∣F̄ n
∗ λ̄− ν̄

∣∣ ≤ C ′

nζ−1
.

Remember that we defined the correlation of observables ϕ, ψ as

Cn(ψ, ϕ, ν̄) =
∣∣∣ ∫ (ψ ◦F̄ n)ϕdν̄ −

∫
ψ dν̄

∫
ϕdν̄

∣∣∣.
The following corollary will be important for the proof of Theorem B.

Corollary 2.7. Let K be as defined in (2.4), assume that θ > 2eK and 1 < ζ < θ
eK
− 1.

Take ϕ ∈ Gθ and ψ ∈ L∞. Given C > 0, there exists C ′ > 0 depending only on cϕ and

‖ψ‖∞, such that

m̄{R̄ > n} ≤ C

nζ
⇒ Cn(ψ, ϕ, ν̄) ≤ C ′

nζ−1
.

2.3 Tower product

In this section we define the tower product structure, adapting several concepts introduced

before to this new setting. We also state some auxiliary results that will be useful later.
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From now on and until the end of this chapter we will simplify the notations by removing

all bars.

Let λ and λ′ be probability measures in ∆ whose densities with respect to m are in G+
θ

and denote

ϕ =
dλ

dLeb
and ϕ′ =

dλ′

dLeb
.

Consider the function

F × F : ∆×∆ → ∆×∆

(x, y) 7→ (F (x), F (y))

and the measure P = λ×λ′ in ∆×∆. Let π, π′ : ∆×∆→ ∆ be the projections on the first

and second coordinates, respectively. It can be easily verified that F n ◦ π = π ◦ (F × F )n,

for all n ∈ N.

Remember the partition Q = {∆l,i} of ∆ and consider the partition Q×Q of ∆×∆.

We observe that each element of Q×Q is sent bijectively by F×F onto a union of elements

of Q×Q. For n ∈ N, we define

(Q×Q)n =
n−1∨
i=0

(F × F )−i(Q×Q)

and denote by (Q × Q)n(x, x′) the element of (Q × Q)n that contains the pair (x, x′) of

∆×∆.

Define R̂ : ∆→ N as

R̂(x) = min{n ∈ N0 : F n(x) ∈ ∆0}.

Note that R̂|∆0 = R|∆0 .

As (F, ν) is mixing and dν
dm
∈ L∞, then there exists n0 ∈ N and δ0 > 0 such that,

for all n ≥ n0, we have m(F−n(∆0) ∩∆0) ≥ δ0. Consider the sequence of stopping times

0 ≡ τ0 < τ1 < · · · , defined in ∆×∆, as

τ1(x, x′) = n0 + R̂(F n0x)

τ2(x, x′) = τ1 + n0 + R̂(F τ1x′)

τ3(x, x′) = τ2 + n0 + R̂(F τ2x)

τ4(x, x′) = τ3 + n0 + R̂(F τ3x′)

...
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Observe that τi+1 − τi ≥ n0 for all i ∈ N.

We introduce now the simultaneous return time T : ∆×∆→ N as

T (x, x′) = min
i≥2

{
τi : (F τix, F τix′) ∈ ∆0 ×∆0

}
.

Note that, as (F, ν) is mixing, then (F × F, ν × ν) is ergodic. So T is well defined m×m
a.e.. We define a sequence of partitions of ∆×∆, ξ1 < ξ2 < · · · as follows:

• ξ1(x, x′) =
(
F−τ1(x)+1Q

)
(x) × ∆. The elements of ξ1 are of the form Γ = A × ∆,

where τ1|A×∆ is constant and A is sent bijectively to ∆0 by F τ1 ;

• for i even, ξi is the refinement of ξi−1 obtained by partitioning Γ ∈ ξi−1 in the x′

direction into sets Γ̃ such that τi|Γ̃ is constant and π′(Γ̃) is sent bijectively to ∆0 by

F τi ;

• for i odd, i > 1, we do the same as in the previous point replacing the x′ direction

by the x direction and π′ by π.

For convenience we define ξ0 = {∆×∆}. Note that

• ∀i ∈ N ∀n ≤ i τn is ξi-measurable;

• ∀i ∈ N {T = τi} and {T > τi} are ξi+1-measurable.

Define a sequence of stopping times in ∆×∆, 0 ≡ T0 < T1 < · · · , as

T1 = T and Tn = Tn−1 + T ◦(F × F )Tn−1 , for n ≥ 2.

Consider the dynamical system F̂ = (F × F )T : ∆ ×∆ → ∆ ×∆. It is easy to verify

that

∀n ∈ N F̂ n = (F × F )Tn .

Define a partition ξ̂1 of ∆×∆, composed by rectangles Γ̂ such that T|Γ̂ is constant and

F̂ : Γ̂→ ∆0 ×∆0 is bijective.

Define a sequence of partitions, ξ̂2, ξ̂3, . . ., by ξ̂n = F̂−(n−1)ξ̂1, for n ≥ 2. Note that Tn

is constant on each element of ξ̂n and F̂n maps each element of ξ̂n bijectively to ∆0 ×∆0.
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Consider the measure m×m for the dynamical system F̂ and the Jacobian, JF̂ , of F̂

with respect to m×m. Define a separation time ŝ : (∆×∆)× (∆×∆)→ N0 as

ŝ(z, w) = min
{
n ∈ N0 : F̂ z and F̂w belong to different elements of ξ̂1

}
.

Denoting

Φ =
dP

d(m×m)
,

we observe that Φ(x, x′) = ϕ(x)ϕ′(x′). We may assume without loss of generality that

ϕ > 0 and ϕ′ > 0.

We are going to present some lemmas that will be needed later. The proof of the

following one can be found in [22, Sublemma 3].

Lemma 2.8. Let CF be the constant defined in Lemma 2.2. For z, w ∈ ∆ ×∆ such that

ŝ(z, w) ≥ n, for some n ∈ N, we have∣∣∣∣∣log
JF̂ nz

JF̂ nw

∣∣∣∣∣ ≤ 2CFβ
ŝ(F̂nz,F̂nw).

Lemma 2.9. For all z, w ∈ ∆×∆, we have∣∣∣∣log
Φ(z)

Φ(w)

∣∣∣∣ ≤ cΦ

ŝ(z, w)θ
,

where cΦ = cϕ + cϕ′.

Proof. Let z = (x, x′) and w = (y, y′). Then, since log x ≤ x−1 for x ∈ R+ and ϕ, ϕ′ ∈ G+
θ ,∣∣∣∣log

Φ(z)

Φ(w)

∣∣∣∣ =

∣∣∣∣log
ϕ(x)

ϕ(y)

ϕ′(x′)

ϕ′(y′)

∣∣∣∣ ≤ ∣∣∣∣log
ϕ(x)

ϕ(y)

∣∣∣∣+

∣∣∣∣log
ϕ′(x′)

ϕ′(y′)

∣∣∣∣
≤
∣∣∣ϕ(x)

ϕ(y)
− 1
∣∣∣+
∣∣∣ϕ′(x′)
ϕ′(y′)

− 1
∣∣∣

≤ cϕ
1

s(x, y)θ
+ cϕ′

1

s(x′, y′)θ
≤ cϕ + cϕ′

ŝ(z, w)θ
.

Lemma 2.10. There exists a constant C > 0 depending only on cϕ and cϕ′, such that, for

all i ∈ N, Γ ∈ ξ̂i, z, w ∈ ∆0 ×∆0 and Q = F̂ i
∗(P |Γ), we have∣∣∣∣ dQdLeb

(z)
/ dQ

dLeb
(w)

∣∣∣∣ ≤ C.
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Proof. Take z0, w0 ∈ Γ such that F̂ i(z0) = z and F̂ i(w0) = w. As ŝ(z0, w0) ≥ i, using

Lemma 2.8 and Lemma 2.9, we get∣∣∣∣ dQdLeb
(z)
/ dQ

dLeb
(w)

∣∣∣∣ =

∣∣∣∣∣ Φ(z0)

JF̂ i(z0)

JF̂ i(w0)

Φ(w0)

∣∣∣∣∣ =
Φ(z0)

Φ(w0)

∣∣∣∣∣JF̂ i(w0)

JF̂ i(z0)

∣∣∣∣∣ ≤ ecΦeCF̂ .

2.4 Probabilistic results

In what follows we will obtain the necessary results in order to prove Theorem 2.6 and

Corollary 2.7, following the approach used in [22] and [2, Appendix A]. Recalling Lemma 2.8

we define CF̂ = 2CF . Take

K > CF̂ +
CF̂

1− β
(2.4)

and Ĉ = K − CF̂ . Observe that

Ĉ >
CF̂

1− β
.

Proposition 2.11. There exists ε0 > 0 such that, for all i ≥ 2 and Γ ∈ ξi with T|Γ > τi−1,

we have

P{T = τi |Γ} ≥ ε0.

The constant ε0 depends only on cϕ, cϕ′ and, if there exists i ≥ i0(cϕ, cϕ′) such that i ≥ i0,

the dependence can be removed.

Proposition 2.12. There exists k0 > 0 such that, for all i ∈ N0, Γ ∈ ξi and n ∈ N0,

P{τi+1 − τi > n0 + n|Γ} ≤ k0 Leb{R̂ > n}.

The constant k0 depends only on cϕ, cϕ′ and, if there exists i ≥ i0(cϕ, cϕ′) such that i ≥ i0,

the dependence can be removed.

The proofs of these two propositions follow the same steps of the proofs of (E1) and

(E2) in [2, Subsections A.3.1 and A.3.2]. We only need to adapt the proof of Lemma A.2

of [2] to our case, which we do next.
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Lemma 2.13. There exists C0 = C0(ϕ) > 0 such that, for all k ∈ N, A ∈
k−1∨
i=0

F−i(Q) with

F k(A) = ∆0, µ = F k
∗ (λ|A) and x, y ∈ ∆0, we have∣∣∣∣ dµ

dLeb
(x)
/ dµ

dLeb
(y)

∣∣∣∣ ≤ C0.

The dependence of C0 on cϕ may be removed if we assume that the number of visits j ≤ k

of A to ∆0 is bigger then a certain j0 = j0(cϕ).

Proof. Given x0, y0 ∈ A such that F k(x0) = x and F k(y0) = y then, as ϕ ∈ G+
θ and using

Lemma 2.2, ∣∣∣∣ dµ

dLeb
(x)
/ dµ

dLeb
(y)

∣∣∣∣ =

∣∣∣∣ ϕ(x0)

JF k(x0)

JF k(y0)

ϕ(y0)

∣∣∣∣ =
ϕ(x0)

ϕ(y0)

∣∣∣∣JF k(y0)

JF k(x0)

∣∣∣∣
≤
(

1 +
cϕ

s(x0, y0)θ

)(
1 + CFβ

s(Fk(x0),Fk(y0)
)

≤
(

1 +
cϕ
jθ

)
(1 + CF ) = C0.

This shows that Lemma A.2 of [2] is still valid in our case. So the proof of Proposition

2.11 is the same as the proof of (E1) in [2, Subsection A.3.1].

Now we state a proposition whose proof can be found in [2, Subsection A.2.1] and uses

Propositions 2.11 and 2.12.

Proposition 2.14. Let C > 0 and ζ > 1 be such that Leb{R > n} ≤ Cn−ζ. Then, there

exists C ′ > 0 such that

P{T > n} ≤ C ′

nζ−1
.

We want to define a sequence of densities (Φ̂i) in ∆×∆ such that

• Φ̂0 ≥ Φ̂1 ≥ · · · ;

• for all i ∈ N and Γ̂ ∈ ξ̂i,

π∗F̂
i
∗
(
(Φ̂i−1 − Φ̂i)((m×m)|Γ̂)

)
= π′∗F̂

i
∗
(
(Φ̂i−1 − Φ̂i)((m×m)|Γ̂)

)
. (2.5)
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Let Ĉ be a constant such that

Ĉ >
CF̂

1− β
and note that

K = Ĉ + CF̂ .

Take ζ as in Theorem 2.6. Noting that 1 < ζ < θ
eK
− 1, we fix ρ such that

ζ + 1 < ρ <
θ

eK
, (2.6)

Take

εi = eK
(

1−
(i− 1

i

)ρ)
,

for i ≥ i0, where i0 is such that εi0 < 1. Further restrictions on i0 will be imposed during

the proof of Lemma 2.16. Define, for i < i0, Φ̂i ≡ Φ and, for i ≥ i0,

Φ̂i(z) =

(
Φ̂i−1(z)

JF̂ i(z)
− εi min

w∈ξ̂i(z)

Φ̂i−1(w)

JF̂ i(w)

)
JF̂ i(z), (2.7)

where ξ̂i(z) is the element of ξ̂i which contains z. It is easy to verify that the sequence(
Φi(z)

)
satisfies condition 2.5.

Lemma 2.15. Assume that θ > eK. Then, there exists i0 ∈ N such that, for i ≥ i0, we

have

Φ̂i ≤
(i− 1

i

)ρ
Φ̂i−1 in ∆×∆.

Recall that, in the beginning of this section, we assumed that ϕ and ϕ′ belong to G+
θ .

We want to prove that if θ is large enough then there exists i0 ∈ N such that, for i ≥ io,

we have

Φ̂i ≤
(i− 1

i

)ρ
Φ̂i−1 in ∆×∆.

The next three lemmas are dedicating to proving this inequality.

For z ∈ ∆×∆, let

Ψ̃i0−1(z) =
Φ

JF̂ i0−1(z)

and, for i ≥ i0,

Ψi(z) =
Ψ̃i−1(z)

JF̂ (F̂ i−1)(z)
,

εi,z = εi min
w∈ξ̂(z)

Ψi(w),

Ψ̃i(z) = Ψi(z)− εi,z.
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Lemma 2.16. Assume that θ > eK. Then, there exists i0 ∈ N such that, for i ≥ i0 and

for all z, w ∈ ∆×∆ with w ∈ ξ̂i(z), we have∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤ Ĉ.

Proof. We divide this proof into several steps.

Step 1: By the definition of Ψi and Lemma 2.8,∣∣∣∣log
Ψi(z)

Ψi(w)

∣∣∣∣ ≤
∣∣∣∣∣log

Ψ̃i−1(z)

Ψ̃i−1(w)

∣∣∣∣∣+

∣∣∣∣∣log
JF̂ (F̂ i−1w)

JF̂ (F̂ i−1z)

∣∣∣∣∣
≤

∣∣∣∣∣log
Ψ̃i−1(z)

Ψ̃i−1(w)

∣∣∣∣∣+ CF̂β
ŝ(F̂ iz,F̂ iw).

Step 2: Setting ε̂i = εi,z = εi,w, we get∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)
− log

Ψi(z)

Ψi(w)

∣∣∣∣∣ =

∣∣∣∣log

(
Ψi(z)− ε̂i

Ψi(z)

Ψi(w)

Ψi(w)− ε̂i

)∣∣∣∣
=

∣∣∣∣∣log

(
1 +

ε̂i
Ψi(w)

− ε̂i
Ψi(z)

1− ε̂i
Ψi(w)

)∣∣∣∣∣ . (2.8)

Noting that ∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)
− log

Ψi(z)

Ψi(w)

∣∣∣∣∣ =

∣∣∣∣∣log
Ψ̃i(w)

Ψ̃i(z)
− log

Ψi(w)

Ψi(z)

∣∣∣∣∣ ,
we may assume that Ψi(w) ≤ Ψi(z). Otherwise, we can swap the positions of z and w.

We can easily verify that, for all 0 < a ≤ b < 1, we have

log
(

1 +
b− a
1− b

)
≤ b

1− b
log

b

a
.

Taking a = ε̂i
Ψi(z)

and b = ε̂i
Ψi(w)

and recalling the definition of ε̂i, we obtain∣∣∣∣∣log

(
1 +

ε̂i
Ψi(w)

− ε̂i
Ψi(z)

1− ε̂i
Ψi(w)

)∣∣∣∣∣ ≤
ε̂i

Ψi(w)

1− ε̂i
Ψi(w)

∣∣∣∣∣log

ε̂i
Ψi(w)

ε̂i
Ψi(z)

∣∣∣∣∣ ≤ εi
1− εi

∣∣∣∣log
Ψi(z)

Ψi(w)

∣∣∣∣ . (2.9)

Gathering the expressions (2.8) and (2.9), we obtain∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)
− log

Ψi(z)

Ψi(w)

∣∣∣∣∣ ≤ εi
1− εi

∣∣∣∣log
Ψi(z)

Ψi(w)

∣∣∣∣ .
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Denoting ε′i = εi
1−εi , we conclude that∣∣∣∣∣log

Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤ (1 + ε′i)

∣∣∣∣log
Ψi(z)

Ψi(w)

∣∣∣∣ .
Step 3: Note that

Ψi0(z) =
Ψ̃i0−1(z)

JF̂ (F̂ i0−1(z))
=

Φ(z)

JF̂ i0−1(z)JF̂ (F̂ i0−1(z))
=

Φ(z)

JF̂ i0(z)
,

and so, using step 2, Lemma 2.8 and Lemma 2.9,∣∣∣∣∣log
Ψ̃i0(z)

Ψ̃i0(w)

∣∣∣∣∣ ≤ (1 + ε′i)

∣∣∣∣log
Ψi0(z)

Ψi0(w)

∣∣∣∣
≤ (1 + ε′i0)

(∣∣∣∣log
Φ(z)

Φ(w)

∣∣∣∣+

∣∣∣∣∣log
JF̂ i0(w)

JF̂ i0(z)

∣∣∣∣∣
)

≤ (1 + ε′i0)

(
cΦ

ŝ(z, w)θ
+ CF̂β

ŝ(F̂ i0z,F̂ i0w)

)
= (1 + ε′i0)

(
cΦ(

ŝ(F̂ i0z, F̂ i0w) + i0
)θ + CF̂β

ŝ(F̂ i0z,F̂ i0w)

)
. (2.10)

Then ∣∣∣∣∣log
Ψ̃i0(z)

Ψ̃i0(w)

∣∣∣∣∣ ≤ (1 + ε′i0)

(
cΦ

iθ0
+ CF̂

)
→

i0→∞
CF̂ < Ĉ

and so we can choose i0 sufficiently large such that∣∣∣∣∣log
Ψ̃i0(z)

Ψ̃i0(w)

∣∣∣∣∣ ≤ Ĉ,

obtaining the conclusion of the Lemma for i = i0.

Step 4: Using steps 2 and 1, we obtain∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤ (1 + ε′i)

(∣∣∣∣∣log
Ψ̃i−1(z)

Ψ̃i−1(w)

∣∣∣∣∣+ CF̂β
ŝ(F̂ iz,F̂ iw)

)
.

Step 5: Using the equality ŝ(F̂ i−jz, F̂ i−jw) = ŝ(F̂ iz, F̂ iw) + j and the inequalities in steps
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3 and 4, we get, for i ≥ i0 + 1,∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤(1 + ε′i)

(
(1 + ε′i−1)

(∣∣∣∣∣log
Ψ̃i−2(z)

Ψ̃i−2(w)

∣∣∣∣∣+ CF̂β
ŝ(F̂ iz,F̂ iw)+1

)
+ CF̂β

ŝ(F̂ iz,F̂ iw)

)

≤

∣∣∣∣∣log
Ψ̃i0(z)

Ψ̃i0(w)

∣∣∣∣∣
i∏

j=i0+1

(1 + ε′j) + CF̂β
ŝ(F̂ iz,F̂ iw)

(
βi−i0−1

i∏
j=i0+1

(1 + ε′j)

+ · · ·+ β(1 + ε′i)(1 + ε′i−1) + (1 + ε′i)
)

≤
( cΦ

ŝ(z, w)ρ
+ CF̂β

ŝ(F̂ iz,F̂ iw)+i−i0
) i∏
j=i0

(1 + ε′j)

+ CF̂β
ŝ(F̂ iz,F̂ iw)

(
βi−i0−1

i∏
j=i0+1

(1 + ε′j) + · · ·+ (1 + ε′i)
)

=
cΦ(

ŝ(F̂ iz, F̂ iw) + i
)θ i∏

j=i0

(1 + ε′j) + CF̂β
ŝ(F̂ iz,F̂ iw)(1 + ε′i)

i∑
k=i0

( i∏
j=k

(1 + ε′j)β
)
.

In the next two steps we will control the two terms of the previous expression.

Step 6: Recalling that ε′i = εi
1−εi and εi = eK

(
1−

(
i−1
i

)ρ)
, it is easy to check that

lim
i

ε′i
1

i

= lim
i

εi
1− εi

1

i

= eK ρ.

Remember that, in (2.6), we chose ρ such that θ > eKρ. So, for i0 sufficiently large and

i ≥ i0, we have ε′i <
θ
i
. As log(1 + x) ≤ x for x > 0, then

log
i∏

j=i0

(1 + ε′j) =
i∑

j=i0

log(1 + ε′j) ≤
i∑

j=i0

ε′j ≤ θ
i∑

j=i0

1

j
≤ θ log

i

i0 − 1
.

So,
i∏

j=i0

(1 + ε′j) ≤
( i

i0 − 1

)θ
and

cΦ(
ŝ(F̂ iz, F̂ iw) + i

)θ i∏
j=i0

(1 + ε′j) ≤
cΦ

iθ

( i

i0 − 1

)θ
=

cΦ

(i0 − 1)θ
.

Step 7: We may choose i0 sufficiently large such that (1 + ε′i0)β < 1. Note that we will

later impose additional restrictions on i0. So, recalling that (ε′i) is a decreasing sequence
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converging to zero, then, for all i ≥ i0,

CF̂β
ŝ(F̂ iz,F̂ iw)(1 + ε′i)

i∑
k=i0

( i∏
j=k

(1 + ε′j)β
)
≤ CF̂ (1 + ε′i0)

∞∑
k=0

(
(1 + ε′i0)β

)k
=

CF̂ (1 + ε′i0)

1− (1 + ε′i0)β
.

Step 8: Replacing the conclusions of steps 6 and 7 on the expression in step 5, we obtain,

for i ≥ i0 + 1, ∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤ cΦ

(i0 − 1)θ
+

CF̂ (1 + ε′i0)

1− (1 + ε′i0)β
.

As ε′i0 →i0→∞
0, then

cΦ

(i0 − 1)θ
+

CF̂ (1 + ε′i0)

1− (1 + ε′i0)β
→

i0→∞

CF̂
1− β

.

Observing that we chose Ĉ >
C
F̂

1−β , then there exists i0 large enough such that, for i ≥ i0+1,∣∣∣∣∣log
Ψ̃i(z)

Ψ̃i(w)

∣∣∣∣∣ ≤ Ĉ.

Recalling that we proved the same result for i = i0 in step 3, this concludes the proof.

Lemma 2.17. Assume that θ > eK. Then, there exists i0 ∈ N such that, for all i ≥ i0 and

Γ̂ ∈ ξ̂i,

max
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)

/
min
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)
≤ eK .

Proof. Notice that, by the definitions, we have, for i ≥ i0,

Φ̂i

JF̂ i(z)
=

Φ̂i−1(z)

JF̂ i(z)
− εi min

w∈ξ̂i(z)

Φ̂i−1(w)

JF̂ i(w)
(2.11)

and

Ψ̃i(z) =
Ψ̃i−1(z)

JF̂ (F̂ i−1(z))
− εi min

w∈ξ̂i(z)

Ψ̃i−1(w)

JF̂ (F̂ i−1(w))
. (2.12)

We will prove by induction that for all z ∈ ∆×∆ and all i ≥ i0 we have

Ψ̃i−1(z) =
Φ̂i−1(z)

JF̂ i−1(z)
, (2.13)
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which, since JF̂ i(z) = JF̂ (F̂ i−1(z))JF̂ i−1(z), is equivalent to

Ψ̃i−1(z)

JF̂ (F̂ i−1(z))
=

Φ̂i−1(z)

JF̂ i(z)
. (2.14)

If i = i0, then (2.13) is true by definition. Supposing now, by induction, that (2.14) is true,

we will prove that it is also true replacing i − 1 by i. In fact, using (2.14) in (2.12) and

remembering (2.11), we obtain

Ψ̃i(z) =
Φ̂i−1(z)

JF̂ i(z)
− εi min

w∈ξ̂i(z)

Φ̂i−1(w)

JF̂ i(w)
=

Φ̂i

JF̂ i(z)
,

which concludes the proof of (2.13). Using (2.13), we have

Ψ̃i−1(z)

Ψ̃i−1(w)
=

Φ̂i−1(z)

JF̂ i−1(z)

Φ̂i−1(w)

JF̂ i−1(w)

=

Φ̂i−1(z)

JF̂ i(z)
JF̂ (F̂ i−1(z))

Φ̂i−1(w)

JF̂ i(w)
JF̂ (F̂ i−1(w))

and so
Φ̂i−1(z)

JF̂ i(z)

Φ̂i−1(w)

JF̂ i(w)

=
Ψ̃i−1(z)

Ψ̃i−1(w)

JF̂ (F̂ i−1(w))

JF̂ (F̂ i−1(z))
.

Since, by Lemma 2.16

Ψ̃i−1(z)

Ψ̃i−1(w)
≤ eĈ ,

and by Lemma 2.8

JF̂ (F̂ i−1(w))

JF̂ (F̂ i−1(z))
≤ eCF̂ ,

then

max
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)

/
min
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)
≤ eĈ+C

F̂ = eK .

Lemma 2.18. Assume that θ > eK. Then, there exists i0 ∈ N such that, for i ≥ i0, we

have

Φ̂i ≤
(i− 1

i

)ρ
Φ̂i−1 in ∆×∆.
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Proof. Observe that, for i ≥ i0 and z ∈ ∆×∆,

Φ̂i(z) ≤
(i− 1

i

)ρ
Φ̂i−1(z)

⇔ Φ̂i−1(z)− εi min
w∈ξ̂i(z)

Φ̂i−1(w)

JF̂ i(w)
JF̂ i(z) ≤ Φ̂i−1(z)−

(
1−

(i− 1

i

)ρ)
Φ̂i−1(z)

⇔ εi min
w∈ξ̂i(z)

Φ̂i−1(w)

JF̂ i(w)
≥
(

1−
(i− 1

i

)ρ)Φ̂i−1(z)

JF̂ i(z)

⇔ εi ≥
(

1−
(i− 1

i

)ρ) Φ̂i−1(z)

JF̂ i(z)

minw∈ξ̂i(z)
Φ̂i−1(w)

JF̂ i(w)

.

Since, by Lemma 2.17, for all Γ̂ ∈ ξ̂i,

max
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)

/
min
w∈Γ̂

Φ̂i−1(w)

JF̂ i(w)
≤ eK (2.15)

the conclusion follows from our choice of εi.

Proposition 2.19. Assume that θ > eK. Then there exists a constant K1 > 0 such that,

for all n ∈ N,

|F n
∗ λ− F n

∗ λ
′| ≤ 2P{T > n}+K1

∞∑
i=1

1

iρ
P{Ti ≤ n < Ti+1}.

The constant K1 depends only on cϕ and cϕ′.

Proof. Given n ∈ N0, z ∈ ∆ × ∆ and recalling the definition of Φ̂i given in (2.7), let

Φ0,Φ1, . . . be defined as follows:

Φn(z) = Φ̂i(z) for Ti(z) ≤ n < Ti+1(z). (2.16)

We will prove that, for all n ∈ N,

|F n
∗ λ− F n

∗ λ
′| ≤ 2

∫
Φn d(m×m). (2.17)

In fact, observing that Φ = Φn +
n∑
k=1

(Φk−1 − Φk), we have

|F n
∗ λ− F n

∗ λ
′| = |π∗(F × F )n∗ (Φ(m×m))− π′∗(F × F )n∗ (Φ(m×m))|

= |π∗(F × F )n∗ (Φn(m×m))− π′∗(F × F )n∗ (Φn(m×m))|

+
n∑
k=1

∣∣(π − π′)∗((F × F )n∗ (Φk−1 − Φk)(m×m)
)∣∣.
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The first term in the last expression is bounded as follows

|π∗(F × F )n∗ (Φn(m×m))− π′∗(F × F )n∗ (Φn(m×m))| ≤ 2

∫
Φn d(m×m).

We will now verify that the other terms vanish. Let Ak,i = {z ∈ ∆ ×∆ : k = Ti(z)} and

Ak =
⋃
Ak,i. Note that each of the sets Ak,i is a union of elements of Γ ∈ ξ̂i and Ak,i 6= Ak,j

for i 6= j. By (2.16) we have Φk−1 − Φk = Φ̂i−1 − Φ̂i on Γ ∈ ξ̂i|Ak,i and Φk−1 = Φk on

∆×∆ \ Ak. Given k ∈ N and remembering that, from (2.5),

π∗F̂
i
∗
(
(Φ̂i−1 − Φ̂i)((m×m)|Γ̂)

)
= π′∗F̂

i
∗
(
(Φ̂i−1 − Φ̂i)((m×m)|Γ̂)

)
,

we have

π∗(F × F )n∗ (Φk−1 − Φk)(m×m) =
∑
i

∑
Γ⊆Ak,i

F n−k
∗ π∗(F × F )Ti∗

(
(Φ̂i−1 − Φ̂i)(m×m)|Γ

)
=
∑
i

∑
Γ⊆Ak,i

F n−k
∗ π′∗(F × F )Ti∗

(
(Φ̂i−1 − Φ̂i)(m×m)|Γ

)
= π′∗(F × F )n∗ (Φk−1 − Φk)(m×m)) .

This completes the proof of (2.17). As a consequence, we have

|F n
∗ λ− F n

∗ λ
′| ≤ 2

∫
Φn d(m×m)

= 2

∫
{Ti0>n}

Φn d(m×m) + 2
∞∑
i=i0

∫
{Ti≤n<Ti+1}

Φn d(m×m). (2.18)

For the first term of this expression we have∫
{Ti0>n}

Φnd(m×m) =

∫
{Ti0>n}

Φ d(m×m) = P{Ti0 > n}

and for each of the others, using Lemma 2.18, we obtain∫
{Ti≤n<Ti+1}

Φn d(m×m) =

∫
{Ti≤n<Ti+1}

Φ̂i d(m×m)

≤
∫
{Ti≤n<Ti+1}

(i0 − 1

i

)ρ
Φ d(m×m)

=
(i0 − 1

i

)ρ
P{Ti ≤ n < Ti+1}.

So, replacing the previous two expressions in (2.18), we get

|F n
∗ λ− F n

∗ λ
′| ≤ 2P{Ti0 > n}+ 2(i0 − 1)ρ

∞∑
i=i0

1

iρ
P{Ti ≤ n < Ti+1}.
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On the other hand,

P{Ti0 > n} = P{T > n}+ (i0 − 1)ρ
i0−1∑
i=1

1

(i0 − 1)ρ
P{Ti ≤ n < Ti+1}

≤ P{T > n}+ (i0 − 1)ρ
i0−1∑
i=1

1

iρ
P{Ti ≤ n < Ti+1}.

Gathering the last two inequalities we conclude that

|F n
∗ λ− F n

∗ λ
′| ≤ 2P{T > n}+K1

∞∑
i=1

1

iρ
P{Ti ≤ n < Ti+1},

where K1 depends only on i0. Fixing i0 sufficiently large, from Lemma 2.18 we obtain the

dependence of K1 on ϕ and ϕ′.

The proof of the following proposition can be found in [2, Subsection A.3.4]. Note that

it uses Lemma A.6 of the same article. While the proof of that lemma is not valid in our

case, we obtained the same conclusion in Lemma 2.10.

Proposition 2.20. There exists a constant K2 > 0 such that, for n ∈ N and i ∈ N0,

P{Ti+1 − Ti > n} ≤ K2(m×m){T > n}.

The constant K2 depends only on cϕ and cϕ′.

We will now see that we can use Propositions 2.14, 2.19 and 2.20 to prove Theorem 2.6.

Proof of Theorem 2.6. Given i ∈ N, we have

P{Ti ≤ n < Ti+1} ≤
i∑

j=0

P
{
Tj+1 − Tj >

n

i+ 1

}
. (2.19)

The last inequality is true because there exists j ≤ i such that Tj+1 − Tj > n
i+1

. In fact,

if we assume the opposite, then n
i
i ≥

∑i
j=1

(
Tj+1 − Tj

)
= Ti+1, which contradicts the

assumption.
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It follows, respectively from Proposition 2.19, (2.19) and Proposition 2.20 that

|F n
∗ λ− F n

∗ λ
′| ≤ 2P{T > n}+K1

∞∑
i=1

1

iρ
P{Ti ≤ n < Ti+1}

≤ 2P{T > n}+K1

∞∑
i=1

1

iρ

i∑
j=0

P
{
Tj+1 − Tj >

n

i+ 1

}
≤ 2P{T > n}+K1K2

∞∑
i=1

1

iρ
(i+ 1) (m×m)

{
T >

n

i+ 1

}
.

We know from Proposition 2.14 that P{T > n} ≤ C/nζ−1. So, taking P = m × m we

obtain

2P{T > n}+K1K2

∞∑
i=1

1

iρ
(i+ 1) (m×m)

{
T >

n

i+ 1

}
≤ 2C

nζ−1
+K1K2

∞∑
i=1

i+ 1

iρ

(i+ 1

n

)ζ−1

≤
(

2C +K1K2

∞∑
i=1

(i+ 1)ζ

iρ

) 1

nζ−1
.

Since, in (2.6), we chose ρ > ζ + 1, we obtain

|F n
∗ λ− F n

∗ λ
′| ≤ C ′

1

nζ−1
.

�

Proof of Corollary 2.7. Let ρ = dν
dLeb

. Take ϕ̃ = b(ϕ + a), where a ≥ 0 is such that ϕ̃ is

bounded from below by a strictly positive constant and b > 0 is such that

∫
ϕ̃ρ dLeb = 1.

Note that, since ϕ ∈ Gθ, then ϕ̃ ∈ G+
θ . In addition, as ρ ∈ F+

β by Theorem 2.5 and

F+
β ⊆ G

+
θ , then ϕ̃ρ ∈ G+

θ .

Let P : L2(∆̄)→ L2(∆̄) be the Perron-Frobenius operator associated with F , which is

defined as follows:

∀ v, w ∈ L2(∆̄)

∫
∆̄

P (v)w dν̄ =

∫
∆̄

v w ◦F̄ dν̄,

i.e., if µ is a signed measure and φ = dµ
dLeb

, then P (φ) = d(F∗µ)
dLeb

. So, if λ is the measure such
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that dλ
dLeb

= ϕ̃ρ, we have

Cn(ψ, ϕ, ν) =
∣∣∣ ∫ (ψ ◦F n)ϕdν −

∫
ψ dν

∫
ϕdν

∣∣∣
=

1

b

∣∣∣ ∫ (ψ ◦F n)(ϕ̃ρ) dLeb−
∫
ψρ dLeb

∫
ϕ̃ρ dLeb

∣∣∣
=

1

b

∣∣∣ ∫ ψP n(ϕ̃ρ) dLeb−
∫
ψρ dLeb

∣∣∣
≤ 1

b

∫
|ψ|
∣∣P n(ϕ̃ρ)− ρ

∣∣ dLeb

≤ 1

b
‖ψ‖∞

∣∣(F n
∗ λ)− ν

∣∣.
Since we already proved that dλ

dLeb
= ϕ̃ρ ∈ G+

θ , the conclusion follows from Theorem 2.6.

�



Chapter 3

Statistical properties

In this chapter, we will prove our two main theorems, stated in Sections 1.2 and 1.3.

3.1 Decay of correlations

This section is dedicated to the proof of Theorem A. We follow the approach of [21] and

[2]. However, we have different hypothesis on the GMY structure.

Remember we want to prove that if f has a GMY structure, given ζ > 1, C1 > 0 and

ϕ, ψ ∈ Hη, there is C2 > 0 such that

Lebγ{R > n} ≤ C1

nζ
⇒ Cn(ϕ, ψ, µ) ≤ C2 max

{ 1

nζ−1
,

1

nαη

}
,

where α is the exponent in (P2) and (P3) and C2 depends only on C1, |ϕη| and |ψη|.

We now present a theorem, which is an improved version of [22, Theorem 2], whose

precise statement can be found in [2, Theorem 3.6] and proof in [2, Appendix A].

Theorem 3.1. For ϕ ∈ F +
β let λ̄ be the measure whose density with respect to m̄ is ϕ.

1. If Leb{R̄ > n} ≤ Cn−ζ, for some C > 0 and ζ > 1, then there is C ′ > 0 such that∣∣F̄ n
∗ λ̄− ν̄

∣∣ ≤ C ′n−ζ+1.

2. If Leb{R̄ > n} ≤ Ce−cn
η
, for some C, c > 0 and 0 < η ≤ 1, then there is C ′, c′ > 0

such that ∣∣F̄ n
∗ λ̄− ν̄

∣∣ ≤ C ′e−c
′nη .
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Moreover, c′ does not depend on ϕ and C ′ depends only on Cϕ.

We will present three lemmas in which we keep reducing the problem of finding an

upper bound for Cn(ϕ, ψ, µ) to similar problems until we are left with finding an upper

bound for the correlation of certain functions in ∆̄. Afterwards, we will show that we can

use the above theorem to conclude the proof.

Remember that we defined Cn(ϕ, ψ, µ) =
∣∣∣ ∫ (ϕ ◦fn)ψ dµ −

∫
ϕdµ

∫
ψ dµ

∣∣∣ for ϕ, ψ

belonging to Hη. We use analogous definitions and notation for functions in the tower ∆

or in the quotient tower ∆̄ with respect to the corresponding measures.

It was shown in [22, Sections 2 and 4] that there exists a measure ν such that µ = π∗ν

and ν̄ = π̄∗ν. For ϕ, ψ ∈ Hη, let ϕ̃ = ϕ ◦ π and ψ̃ = ψ ◦ π.

First, note that∫
(ϕ ◦fn)ψ dµ =

∫
(ϕ ◦fn)ψ d(π∗ν) =

∫
(ϕ ◦fn ◦π) (ψ ◦π) dν

=

∫
(ϕ ◦π ◦F n)ψ̃ dν =

∫
(ϕ̃ ◦F n)ψ̃ dν

and, arguing as above, ∫
ϕdµ

∫
ψ dµ =

∫
ϕ̃ dν

∫
ψ̃ dν.

So, Cn(ϕ, ψ, µ) = Cn(ϕ̃, ψ̃, ν).

Given n ∈ N, fix a positive integer k < n/2. Let ϕ̄k be a discretization of ϕ̃ defined on

∆ as

ϕ̄k|Q = inf{ϕ̃ ◦F k(x) : x ∈ Q}, for Q ∈ Q2k.

The next lemma proves that we only need to obtain the conclusion for Cn−k(ϕ̄k, ψ̃, ν).

Lemma 3.2. For ϕ, ψ ∈ Hη, let ϕ̃, ψ̃ and ϕ̄k be defined as above. Then

|Cn(ϕ̃, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃, ν)| ≤ C2

kαη
,

where C2 is a constant depending only on |ϕ|η and on ‖ψ‖∞.

Proof. Notice that, since ν is F -invariant,

Cn−k(ϕ̃ ◦F k, ψ̃, ν) =
∣∣∣ ∫ (ϕ̃ ◦F k ◦F n−k)ψ̃dν −

∫
ϕ̃ ◦F kdν

∫
ψ̃ dν

∣∣∣ = Cn(ϕ̃, ψ̃, ν). (3.1)
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Using the fact that ϕ is Hölder continuous and Lemma 2.1, we observe that for Q ∈ Q2k

and all x, y ∈ Q,

|ϕ̃ ◦F k(x)− ϕ̃ ◦F k(y)| = |ϕ ◦ π ◦F k(x)− ϕ ◦ π ◦F k(y)|

≤ |ϕ|ηd(πF k(x), πF k(y))η

≤ |ϕ|η diam(πF k(Q))η ≤ |ϕ|η
( C
kα

)η
,

which implies that, for any x ∈ Q,

|ϕ̃ ◦F k(x)− ϕ̄k(x)| = |ϕ ◦ π ◦F k(x)− inf{ϕ ◦ π ◦F k(y) : y ∈ Q}| ≤ |ϕ|η
( C
kα

)η
. (3.2)

Applying (3.1), (3.2) and the F -invariance of ν we obtain∣∣Cn(ϕ̃, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃, ν)
∣∣ =

∣∣Cn−k(ϕ̃ ◦F k, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃, ν)
∣∣

=

∣∣∣∣∣∣∣ ∫ (ϕ̃ ◦F k ◦F n−k)ψ̃dν −
∫
ϕ̃ ◦F kdν

∫
ψ̃ dν

∣∣∣
−
∣∣∣ ∫ (ϕ̄k ◦F n−k)ψ̃ dν −

∫
ϕ̄k dν

∫
ψ̃ dν

∣∣∣∣∣∣∣
≤
∣∣∣ ∫ (ϕ̃ ◦F k − ϕ̄k) ◦F n−kψ̃dν

∣∣∣+
∣∣∣ ∫ (ϕ̃ ◦F k − ϕ̄k)dν

∫
ψ̃dν

∣∣∣
≤ ‖ψ‖∞

(∫ ∣∣∣(ϕ̃ ◦F k − ϕ̄k) ◦F n−k∣∣dν +

∫ ∣∣ϕ̃ ◦F k − ϕ̄k
∣∣∣dν)

≤ 2‖ψ‖∞|ϕ|η
( C
kα

)η
.

We only need to take C2 = 2‖ψ‖∞|ϕ|ηCη.

Define ψ̄k in a similar way to ϕ̄k. Denote by ψ̄kν the signed measure whose density

with respect to ν is ψ̄k and by ψ̃k the density of F k
∗ ψ̄kν with respect to ν.

Note that, if ν is a signed measure, then the total variation of ν is defined as |ν| =

ν+ + ν−.

Now, we will see that it is sufficient to obtain the upper bound for Cn−k(ϕ̄k, ψ̃k, ν).

Lemma 3.3. For ϕ, ψ ∈ Hη, let ϕ̄k, ψ̃ and ψ̃k be defined as before. Then∣∣Cn−k(ϕ̄k, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃k, ν)
∣∣ ≤ C3

kαη
,

where C3 is a constant depending only on |ϕ|∞ and on ‖ψ‖η.
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Proof. Observe that, since ‖ϕ̄k‖∞ ≤ ‖ϕ‖∞,∣∣Cn−k(ϕ̄k, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃k, ν)
∣∣

=

∣∣∣∣∣∣∣ ∫ (ϕ̄k ◦F n−k)ψ̃ dν −
∫
ϕ̄k dν

∫
ψ̃ dν

∣∣∣
−
∣∣∣ ∫ (ϕ̄k ◦F n−k)ψ̃k dν −

∫
ϕ̄k dν

∫
ψ̃k dν

∣∣∣∣∣∣∣
≤
∫ ∣∣ϕ̄k ◦F n−k∣∣ ∣∣ψ̃ − ψ̃k∣∣dν +

∫ ∣∣ϕ̄k∣∣dν ∫ ∣∣ψ̃ − ψ̃k∣∣dν
≤ 2‖ϕ‖∞

∫ ∣∣ψ̃ − ψ̃k∣∣dν. (3.3)

Note that

F k
∗ ((ψ̃ ◦F k)ν) = ψ̃ν

and so, by the definition of ψ̃k, we have∫ ∣∣ψ̃ − ψ̃k∣∣dν =
∣∣ψ̃ν − ψ̃kν∣∣

=
∣∣F k
∗ ((ψ̃ ◦F k)ν)− F k

∗ (ψ̄kν)
∣∣

≤
∣∣(ψ̃ ◦F k − ψ̄k)ν

∣∣
=

∫ ∣∣ψ̃ ◦F k − ψ̄k
∣∣dν. (3.4)

Using Lemma 2.1, (3.3), (3.4) and the same argument as in (3.2) we get

|Cn−k(ϕ̄k, ψ̃, ν)− Cn−k(ϕ̄k, ψ̃k, ν)| ≤ 2‖ϕ‖∞
∫
|ψ̃ ◦F k − ψ̄k|dν ≤ 2‖ϕ‖∞|ψ|η

(C1

kα

)η
.

To conclude, we just need to take C3 = 2‖ϕ‖∞|ψ|ηCη
1 .

We will now show that we only need to prove the result for Cn(ϕ̄k, ψ̄k, ν̄).

Lemma 3.4. For ϕ, ψ ∈ Hη, let ϕ̄k, ψ̃k and ψ̄k be defined as before. Then

Cn−k(ϕ̄k, ψ̃k, ν) = Cn(ϕ̄k, ψ̄k, ν̄).

Proof. We have, by definition of ψ̃k,∫
(ϕ̄k ◦F n−k)ψ̃kdν =

∫
ϕ̄k ◦F n−kd(ψ̃kν) =

∫
ϕ̄kd(F n−k

∗ (ψ̃kν)) =

∫
ϕ̄kd(F n

∗ (ψ̄kν)).
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Since ϕ̄k is constant on γs leaves, then∫
ϕ̄kd(F n

∗ (ψ̄kν)) =

∫
ϕ̄kd(π̄F n

∗ (ψ̄kν))

and, as F and F̄ are semi-conjugated by π̄,∫
ϕ̄kd(π̄F n

∗ (ψ̄kν)) =

∫
ϕ̄kd(F̄ n

∗ (ψ̄kν̄)) =

∫
(ϕ̄k ◦F̄ n)ψ̄kdν̄.

So, we have proved that ∫
(ϕ̄k ◦F n−k)ψ̃kdν =

∫
(ϕ̄k ◦F̄ n

∗ )ψ̄kdν̄. (3.5)

Additionally, as ϕ̄k is constant on γs leaves, and using the definition of ψ̃k and the F̄ -

invariance of ν̄,∫
ϕ̄kdν

∫
ψ̃kdν =

∫
ϕ̄kdν̄

∫
d(F k

∗ (ψ̄kν)) =

∫
ϕ̄kdν̄

∫
ψ̄kdν̄. (3.6)

Gathering (3.5) and (3.6), we obtain the conclusion.

Without loss of generality we may assume that ψ̄k is not the null function. We define

bk =
1∫

(ψ̄k + 2‖ψ̄k‖∞)dν̄
and ψ̂k = bk(ψ̄k + 2‖ψ̄k‖∞).

Since ‖ψ̄k‖∞ ≤ ψ̄k + 2‖ψ̄k‖∞ ≤ 3‖ψ̄k‖∞, then

1

3‖ψ̄k‖∞
≤ bk ≤

1

‖ψ̄k‖∞
.

Defining ρ̄ =
dν̄

dm̄
, we have, by the definition of bk,∫

ψ̂k ρ̄ dm̄ = 1.

Since ψ̄k is constant on elements of Q2k, so is ψ̂k. Denote by λ̂k the probability measure

on ∆̄ whose density with respect to m̄ is ψ̂kρ̄.

Lemma 3.5. For ϕ, ψ ∈ Hη, let ϕ̄k and ψ̄k be defined as before. Then

Cn(ϕ̄k, ψ̄k, ν̄) ≤ C4|F̄ n−2k
∗ λ̄k − ν|,

where C4 is a constant depending only on |ϕ|∞ and on ‖ψ‖∞.
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Proof. Notice that, by the definition of ψ̂k and the F̄ -invariance of ν̄,∫
(ϕ̄k ◦F̄ n) ψ̄k dν̄ =

∫
(ϕ̄k ◦F̄ n)

( 1

bk
ψ̂k − 2‖ψ̄k‖∞

)
dν̄

=
1

bk

∫
(ϕ̄k ◦F̄ n) ψ̂k dν̄ − 2‖ψ̄k‖∞

∫
ϕ̄k ◦F̄ n dν̄

=
1

bk

∫
(ϕ̄k ◦F̄ n) ψ̂k dν̄ − 2‖ψ̄k‖∞

∫
ϕ̄k dν̄

and, similarly, ∫
ϕ̄k dν̄

∫
ψ̄k dν̄ =

1

bk

∫
ϕ̄k dν̄

∫
ψ̂k dν̄ − 2‖ψ̄k‖∞

∫
ϕ̄k dν̄.

Then, using the last two equalities and the definitions of ρ̄ and λ̂k, we obtain

Cn(ϕ̄k, ψ̄k, ν̄) =
∣∣∣ ∫ (ϕ̄k ◦F̄ n) ψ̄k dν̄ −

∫
ϕ̄k dν̄

∫
ψ̄k dν̄

∣∣∣
=

1

bk

∣∣∣ ∫ (ϕ̄k ◦F̄ n) ψ̂k dν̄ −
∫
ϕ̄k dν̄

∫
ψ̂k dν̄

∣∣∣
=

1

bk

∣∣∣ ∫ (ϕ̄k ◦F̄ n) ψ̂kρ̄ dm̄−
∫
ϕ̄kρ̄ dm̄

∫
ψ̂kρ̄ dm̄

∣∣∣
=

1

bk

∣∣∣ ∫ ϕ̄k
d
(
F̄ n
∗ λ̂k

)
dm̄

dm̄−
∫
ϕ̄kρ̄ dm̄

∣∣∣
≤ 1

bk

∫
|ϕ̄k|

∣∣∣d(F̄ n
∗ λ̂k)

dm̄
− ρ̄
∣∣∣ dm̄. (3.7)

Setting λ̄k = F̄ 2k
∗ λ̂k and since k < n/2, we have

d

dm̄
F̄ n
∗ λ̂k =

d

dm̄
F̄ n−2k
∗ λ̄k,

and so, using (3.7), we have

Cn(ϕ̄k, ψ̄k, ν̄) ≤ 1

bk

∫
|ϕ̄k|

∣∣∣d(F̄ n
∗ λ̂k)

dm̄
− ρ̄
∣∣∣dm̄

=
1

bk

∫
|ϕ̄k|

∣∣∣d(F̄ n−2k
∗ λ̄k)

dm̄
− dν̄

dm̄

∣∣∣dm̄
≤ 1

bk
‖ϕ̄k‖∞|F̄ n−2k

∗ λ̄k − ν̄|.

Since 1
bk
≤ 3‖ψ̄k‖∞, we get

Cn(ϕ̄k, ψ̄k, ν̄) ≤ 1

bk
‖ϕ̄k‖∞|F̄ n−2k

∗ λ̄k − ν|

≤ 3‖ψ̄k‖∞‖ϕ̄k‖∞|F̄ n−2k
∗ λ̄k − ν|

≤ 3‖ψ‖∞‖ϕ‖∞|F̄ n−2k
∗ λ̄k − ν|.
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We just need to take C4 = 3‖ψ‖∞‖ϕ‖∞.

Gathering everything that was proved in the previous lemmas, we get

Cn(ϕ, ψ, µ) = Cn(ϕ̃, ψ̃, µ)

≤ Cn−k(ϕ̄k, ψ̃, µ) +
C2

kαη

≤ Cn−k(ϕ̄k, ψ̃k, ν) +
C3 + C2

kαη

≤ C4|F̄ n−2k
∗ λ̄k − ν|+

C3 + C2

kαη
.

Let φk be the density of the measure λ̄k with respect to m̄. The next lemma, whose

proof is given in [2, Lemma 4.1], implies that φk ∈ F+
β .

Lemma 3.6. There is C > 0, not depending on φk, such that

|φk(x̄)− φk(ȳ)| ≤ Cβ s̄(x̄,ȳ), ∀ x̄, ȳ ∈ ∆̄.

Lemma 3.6 and the inequality Cn(ϕ, ψ, µ) ≤ C4|F̄ n−2k
∗ λ̄k − ν| + C3+C2

kαη
, proved before,

allow us to use Theorem 3.1 to obtain

Cn(ϕ, ψ, µ) ≤ C4
C ′

(n− 2k)ζ−1
+
C3 + C2

kαη
≤ C max

{ 1

nζ−1
,

1

nαη

}
.

This concludes the proof of Theorem A.

3.2 Large deviations

In this section we will prove Theorem B. It is based on the proofs in [14] and [12], although

our assumptions are different.

Recall that we want to prove that, if f has a GMY structure Λ, then there are η0 > 0

and ζ0 > 1 such that for all η > η0, 1 < ζ < ζ0, ε > 0, p > max{1, ζ − 1}, C1 > 0 and

φ ∈ Hη, there exists C2 > 0 such that

Lebγ{R > n} ≤ C1

nζ
⇒ LD(φ, ε, n, µ) ≤ C2

ε2pnζ−1
.

where C2 depends only on C1, p, |ψ|η and cφ.
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Remark 3.7. If ζ ≥ αη−1
eC1
− 1, we obtain the conclusion of the above theorem replacing ζ

by any κ such that 1 < κ < αη−1
eC1
− 1.

The proof of Theorem B uses the construction of a function ψ ∈ Gθ(∆̄), which will be

done in Proposition 3.10, for θ = αη − 1. However, if ψ ∈ Fγ(∆̄) with 0 < γ < 1, then

ψ ∈ Gθ(∆̄) for all θ > 0. So, in this case, Theorem B is valid for any ζ > 1, choosing θ

arbitrarily large.

Lemma 3.8. There exists a constant C3 > 0 such that, for all x, y ∈ γu with s(x, y) 6= 0

and all 0 ≤ k < R, we have

d(fkx, fky) ≤ C3

s(x, y)α
.

Proof. Let n ∈ N be such that s(x, y) = n. Then, using (P3), we get

d(fkx, fky) = d(fk−Rn(fRnx), fk−Rn(fRny)) ≤ C ′

(Rn − k)α
d(fRnx, fRny)

≤ C ′

(Rn − k)α
diam(M) ≤ C3

(Rn − k)α
.

Since R− k ≥ 1, then Rn − k ≥ n, and so

d(fkx, fky) ≤ C3

(s(x, y))α
.

Definition 3.9. We say that a function ψ : ∆→ R depends only on future coordinates if,

given x, y ∈ ∆ with y ∈ γs(x), then ψ(x) = ψ(y).

We will now present a result that characterizes an Hölder function in M with the help

of a function in the quotient tower with a certain regularity. It is an adaptation to the

polynomial case of [13, Lemma 3.2] which proves an analogous result for the exponential

case.

Proposition 3.10. Let f has a GMY structure Λ and φ : M → R be a function belonging

to Hη for η > 1/α. Then there exist functions χ, ψ : ∆→ R such that:

1. χ ∈ L∞(∆) and ‖χ‖∞ depends only on |φ|η;

2. φ ◦ π = ψ + χ− χ ◦ F ;
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3. ψ depends only on future coordinates;

4. the function ψ : ∆̄ → R belongs to Gθ, for θ = α η − 1. More precisely, there exists

cψ > 0, depending only on |φ|η, such that for all p, q ∈ ∆̄,

|ψ(p)− ψ(q)| ≤ cψ
max{s̄(p, q), 1}θ

.

Proof. Let us fix γu ∈ Γu. Given p = (x, l) ∈ ∆, let p̂ = (x̂, l), where x̂ is the unique point

in γs(x) ∩ γu and define

χ(p) =
∞∑
j=0

(
φπF j(p)− φπF j(p̂)

)
.

Observing that π ◦ F j(p) = f j ◦ π(p) = f j+l(x) and using (P2), we have

|χ(p)| ≤
∞∑
j=0

∣∣∣φπF j(p)− φπF j(F̂ p)
∣∣∣

≤
∞∑
j=0

|φ|η d(f j+l(x), f j+l(x̂))η

≤ |φ|η Cη

∞∑
j=0

1

jαη
= C ′ |φ|η,

since αη > 1. So, 1. is verified.

Defining ψ = φ ◦ π − χ+ χ ◦ F , 2. is verified and, as

ψ(p) = φπ(p)−
∞∑
j=0

φπF j(p) +
∞∑
j=0

φπF j(p̂) +
∞∑
j=0

φπF j+1(p)−
∞∑
j=0

φπF j(F̂ p)

=
∞∑
j=0

(
φπF j(p̂)− φπF j(F̂ p)

)
,

ψ depends only on future coordinates. So, 3. is proved.

We are left to prove 4. Let n ∈ N and p, q ∈ ∆. Then

|ψ(p)− ψ(q)| ≤
n∑
j=0

∣∣φπF j(p̂)− φπF j(q̂)
∣∣+

n−1∑
j=0

∣∣φπF j(F̂ p)− φπF j(F̂ q)
∣∣

+
∞∑

j=n+1

∣∣φπF j(p̂)− φπF j−1(F̂ p)
∣∣+

∞∑
j=n+1

∣∣φπF j(q̂)− φπF j−1(F̂ q)
∣∣. (3.8)
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Since the choice of n is arbitrary we can assume that s(p, q) ≈ 2n. This will mean that

there will be no separation during the calculations of the first two terms.

We will consider separately each term of the right-hand side of (3.8). We start with the

third term. When p 6= (x,R(x)−1) then F p̂ = F̂ p. If p = (x,R(x)−1) then F p̂ = (fRx̂, 0)

and F̂ p = (f̂Rx, 0) and so πF j p̂ = f j−1fRx̂ and πF j−1F̂ p = f j−1f̂Rx. But fRx̂ and f̂Rx

belong to the same stable leaf, and then, using (P2),∣∣φπF j(p̂)− φπF j−1(F̂ p)
∣∣ =

∣∣φf j−1fR(x̂)− φf j−1(f̂Rx)
∣∣

≤ |φ|ηd(f j−1fR(x̂), f j−1(f̂Rx))
η
≤ |φ|η

1

(j − 1)αη
= |φ|η

1

(j − 1)θ+1

and then, recalling that s(p, q) ≈ 2n,
∞∑

j=n+1

∣∣φπF j p̂− φπF j−1F̂ p
∣∣ ≤|φ|η ∞∑

j=n+1

1

(j − 1)θ+1

≤C ′|φ|η
1

nθ
≈ 2θC ′|φ|η

1

s(p, q)θ
. (3.9)

The calculations for the fourth term of the right-hand side of (3.8) are similar.

Let us consider now the first term. Recall that there is no separation during the

calculations. Let p = (x, l) and q = (y, l). Then

πF j(p̂) = f j+l(x̂) = fLfR(x)J(x̂), where J ≤ j and L < R
(
(fR)J(x̂)

)
,

and

πF j(q̂) = f j+l(ŷ) = fLfR(x)J(ŷ), where J ≤ j and L < R
(
(fR)J(ŷ)

)
.

Then, since φ ∈ Hη and using the calculations above and Lemma 3.8,∣∣φπF j(p̂)− φπF j(q̂)
∣∣ ≤ |φ|ηd(πF j(p̂), πF j(q̂))

η
= |φ|ηd(fLfR(x)J(x̂), fLfR(x)J(ŷ))

η

≤ C3|φ|η
1

s(fR(x)J(x̂), fR(x)J(ŷ))
αη = C3|φ|η

1(
s(x̂, ŷ)− J

)θ+1

≤ C3|φ|η
1(

s(x̂, ŷ)− j
)θ+1

≈ C3|φ|η
1

(2n− j)θ+1
.

So, we have
n∑
j=0

∣∣φπF j(p̂)− φπF j(q̂)
∣∣ ≤C3|φ|η

n∑
j=0

1

(2n− j)θ+1

≤C ′′|φ|η
1

nθ
≈ 2θC ′′|φ|η

1

s(p, q)θ
. (3.10)
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The calculations for the second term of the right-hand side of (3.8) are analogous.

From (3.9) and (3.10), we obtain

|ψ(p)− ψ(q)| ≤ cψ
s(p, q)θ

,

where cψ depends only on |φ|η.

A sequence of σ-algebras {Fi}i∈N is said to form a filtration if, for all i ∈ N, Fi ⊂ Fi+1.

A sequence of random variables {Xi}i∈N is adapted to a filtration {Fi}i∈N, if, or all i ∈ N,

Xi is measurable with respect to Fi. A sequence of random variables {Xi}i∈N is said to

a sequence of martingale differences with respect to a filtration {Fi}i∈N if it is adapted to

the filtration and, for all i ∈ N,

E(X1) = 0, E(Xi+1|Fi) = 0

Before proceeding, we present an auxiliary result that can be found in [17, Theorem

2.5].

Theorem 3.11. Let {Xi} be a sequence of L2 random variables with filtration Gi. Let

p ≥ 1 and define

bi,n = max
i≤k≤n

‖Xi

k∑
j=i

E(Xj|Gi)‖p. (3.11)

Then

E|X1 + · · ·+Xn|2p ≤
(
4p

n∑
i=1

bi,n
)p
.

We recall Markov Inequality, which states that given a measure space (X,A, µ), a

function f ∈ L1(x, µ) and ε > 0 then

µ{|f | > ε} ≤ 1

ε

∫
X

|f |dµ.

Given ψ : ∆̄→ R, we define ψn =
n−1∑
i=1

ψ ◦F̄ i.

In the next proposition we prove that, in the quotient tower, a control on the decay

of correlations implies a control on large deviations. This proof is based on [12, Theorem

1.2].
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Proposition 3.12. Let ζ > 0 and ψ ∈ Gθ(∆̄), for some θ > 0. Suppose there exists C4 > 0

such that, for all w ∈ L∞(∆̄) and all n ≥ n0 we have

Cn(w,ψ, ν̄) ≤ C4

nζ
,

where C4 depends only on cψ and ‖w‖∞. Then, for ε > 0 and p > max{1, ζ},

LD(ψ, ε, n, ν̄) ≤ C5

ε2pnζ
,

where C5 > 0 depends only on p, cψ and ‖ψ‖∞.

Proof. We may assume, without loss of generality, that

∫
ψ dν̄ = 0. By Markov’s inequal-

ity, we have

ν̄
{∣∣∣ 1
n
ψn

∣∣∣ > ε
}

= ν̄
{∣∣∣ 1
n
ψn

∣∣∣2p > ε2p
}
≤ 1

ε2p

∫
∆̄

∣∣∣ 1
n
ψn

∣∣∣2p dν̄ = ‖ψn‖2p
2p

1

ε2p

1

n2p

and so we only need to prove that

‖ψn‖2p
2p ≤ C5 n

2p−ζ , (3.12)

where C5 > 0 depends only on p, cψ and ‖ψ‖∞.

Recall that we defined P : L2(∆̄) → L2(∆̄), the Perron-Frobenius operator associated

with F , as follows:

∀ v, w ∈ L2(∆̄)

∫
∆̄

P (v)w dν̄ =

∫
∆̄

v w ◦F̄ dν̄.

By this definition and the hypothesis, we have, for all w ∈ L∞(∆̄),∣∣∣ ∫
∆̄

P n(ψ)w dν̄
∣∣∣ =

∣∣∣ ∫
∆̄

ψ w ◦F̄ n dν̄
∣∣∣ = Cn(w,ψ, ν̄) ≤ C4

nζ
. (3.13)

Choosing w = sgnP n(ψ) in (3.13) we get

‖P n(ψ)‖1 =

∫
∆̄

P n(ψ) sgn(P nψ) dν̄ ≤ C4

nζ
.

Note that, from now on, C4 depends only on cψ as ‖ sgnP n(ψ)‖∞ = 1.

Since ‖P n(ψ)‖∞ ≤ ‖ψ‖∞ we have

‖P n(ψ)‖p =
(∫

∆̄

∣∣P n(ψ)
∣∣p−1∣∣P n(ψ)

∣∣ dν̄) 1
p

≤‖P n(ψ)‖
1− 1

p
∞ ‖P n(ψ)‖

1
p

1 ≤ ‖ψ‖
1− 1

p
∞

(C4)
1
p

n
ζ
p

=
C ′

n
ζ
p

, (3.14)
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where C ′ = (C4)1/p‖ψ‖1−1/p
∞ depends only on p, cψ and ‖ψ‖∞.

Define

χk =
k∑

n=1

P n(ψ) and ϕk = ψ − χk ◦F + χk − P k(ψ). (3.15)

Observe that, from (3.14), χk, ϕk ∈ Lp(∆̄),

‖χk‖p ≤
k∑

n=1

‖P n(ψ)‖p ≤ C ′
k∑

n=1

1

n
ζ
p

≤ C ′
k1− ζ

p

1− ζ
p

(3.16)

and

‖ϕk‖p ≤ ‖ψ‖p + 2‖χk‖p + ‖P k(ψ)‖p ≤ 4C ′
k1− ζ

p

1− ζ
p

(3.17)

for k sufficiently large.

We are going to prove that P (ϕk) = 0. In fact, given w ∈ L2(∆̄), we have, since ν̄ is

F -invariant,∫
∆̄

P (χk)w dν̄ −
∫

∆̄

P (χk ◦F )w dν̄ =

∫
∆̄

χkw ◦F dν̄ −
∫

∆̄

χk ◦Fw ◦F dν̄

=

∫
∆̄

χk w ◦F dν̄ −
∫

∆̄

χk w dν̄

=
k∑

n=1

∫
∆̄

P n(ψ)w ◦F dν̄ −
k∑

n=1

∫
∆̄

P n(ψ)w dν̄

=
k∑

n=1

∫
∆̄

ψ(w ◦F n+1 − w ◦F n) dν̄

=

∫
∆̄

ψ(w ◦F k+1 − w ◦F ) dν.

On the other hand,∫
∆̄

P (ψ)w − P k+1(ψ)w dν =

∫
∆̄

ψ(w ◦F − w ◦F k+1) dν.

So, P (ϕk) = P (ψ)− P (χk ◦F ) + P (χk)− P k+1(ψ) = 0.

The operator P is the adjoint operator of U : L2(∆̄, ν̄) → L2(∆̄, ν̄) defined by U(v) =

v ◦F . Besides, P ◦U = I, where I is the identity operator, and U ◦P = E(·|F−1M), where

M is the underlying σ-algebra. So, E(ϕk|F−1M) = 0 and E(ϕk ◦F j|F−(n+1)M) = 0.

Then, {ϕk ◦F n : n ∈ N0} is a sequence of reverse martingale differences. Passing to the
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natural extension (see [17]), {ϕk ◦F n : n ∈ N0} is a sequence of martingale differences with

respect to a filtration {Gn : n ∈ N0}.

Defining Xj = ψ ◦F j in Theorem 3.11, we have

bi,n = max
i≤l≤n

∥∥ψ ◦F i

l∑
j=i

E(ψ ◦F j|Gi)
∥∥
p
≤ ‖ψ‖∞ max

i≤l≤n

∥∥ l∑
j=i

E(ψ ◦F j|Gi)
∥∥
p

and, by that theorem, we obtain

‖ψn‖2p
2p ≤

(
4p

n∑
i=1

bi,n
)p
. (3.18)

Recalling the definition of ϕk in (3.15), we have

l∑
j=i

E(ψ ◦F l|Gi) = ϕk ◦F i + E(χk ◦F l+1|Gi)− E(χk ◦F i|Gi) +
l∑
j=i

E(P k(ψ) ◦F l|Gi),

and so, using (3.14), (3.16) and (3.17), we obtain

∥∥∥ l∑
j=i

E(ψ ◦F l|Gi)
∥∥∥
p
≤ ‖ϕk‖p + 2‖χk‖p + n‖P k(ψ)‖p ≤ C ′

(
6
k1− ζ

p

1− ζ
p

+
n

k
ζ
p

)
.

Then,

bi,n ≤ C ′′

(
6
k1− ζ

p

1− ζ
p

+
n

k
ζ
p

)
,

where C ′′ depends only on p, cψ and ‖ψ‖∞. Then, recalling (3.18) and choosing k = n, we

conclude that

‖ψn‖2p
2p ≤

(
4p

n∑
i=1

bi,n
)p ≤ C5n

2p−ζ ,

where C5 depends only on p, cψ and ‖ψ‖∞.

Proposition 3.13. Suppose that f has a GMY structure Λ and φ : M → R is a function

belonging to Hη. Assume that there exist ψ ∈ Gθ, for some θ > 0, and χ ∈ L∞(∆) such

that φ ◦ π = ψ + χ − χ ◦ F̄ where ψ depends only on future coordinates. Fixing ζ > 0,

assume that, for all w ∈ L∞(∆̄) and all n ≥ n0 there exists C4 > 0, depending only on cψ

and ‖w‖∞, such that

Cn(w,ψ, ν̄) ≤ C4

nζ
.
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Then, for ε > 0 and p > max{1, ζ},

LD(φ, ε, n, µ) ≤ C2

ε2pnζ
,

where C2 > 0 depends only on p, cψ and ‖ψ‖∞.

Proof. We may assume, without loss of generality, that

∫
φ dµ = 0.

By assumption, we can write φ ◦ π = ψ + χ − χ ◦ F̄ where ψ ∈ Gθ, for some θ > 0,

χ ∈ L∞(∆) and ψ depends only on future coordinates. By Proposition 3.12 we have

ν̄
{∣∣∣ 1
n
ψn

∣∣∣ > ε
}
≤ C5

ε2pnζ
, (3.19)

where C5 > 0 depends only on p, cψ and ‖ψ‖∞.

Note that

µ
{∣∣∣ 1
n
φn(x)

∣∣∣ > ε
}

= ν
{∣∣∣ 1
n
φn(πy)

∣∣∣ > ε
}

(3.20)

and

φn ◦π =
n−1∑
k=0

φ ◦fk ◦π =
n−1∑
k=0

φ ◦π ◦F k

=
n−1∑
k=0

ψ ◦F k +
n−1∑
k=0

χ ◦F k −
n−1∑
k=0

χ ◦F k+1

=ψn + χ− χ ◦F n.

Let y ∈ ∆ be such that 1
n

∣∣ψn(y) + χ(y) − χ(F ny)
∣∣ > ε. Then 1

n

∣∣ψn(y)
∣∣ + 2

n
‖χ‖∞ > ε

and so { 1

n

∣∣φn ◦π∣∣ > ε
}

=
{ 1

n

∣∣ψn + χ− χ ◦F n
∣∣ > ε

}
⊆
{ 1

n

∣∣ψn∣∣ > ε− 2

n
‖χ‖∞

}
.

From (3.19), (3.20) and the last inclusion we get, for a sufficiently large n0 and n ≥ n0,

µ
{∣∣∣ 1
n
φn(x)

∣∣∣ > ε
}
≤ ν̄

{ 1

n

∣∣ψn∣∣ > ε− 2

n
‖χ‖∞

}
≤ C2

ε2pnζ
, (3.21)

where C2 > 0 depends only on p, cψ and ‖ψ‖∞.

Proof of Theorem B. Note that to obtain the conclusion we only need to verify the assump-

tions of Proposition 3.13.
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ψ ∈ Gθ(∆), for θ = αη − 1, and χ ∈ L∞(∆) such that φ ◦ π = ψ + χ − χ ◦ F̄ , where

ψ depends only on future coordinates and cψ depends only on |φ|η. So, we may apply

Corollary 2.7, obtaining, for all w ∈ L∞(∆̄),

Cn(w,ψ, ν) ≤ C4

nζ−1
,

where C4 depends only on cψ and ‖w‖∞. Consequently, using Proposition 3.13,

LD(φ, ε, n, µ) ≤ C2

ε2pnζ−1

where C2 > 0 depends only on p, cψ and ‖ψ‖∞ and so, only on p, |φ|η and ‖ψ‖∞. As

‖ψ‖∞ ≤ ‖φ‖∞ + 2‖χ‖∞ and, by Proposition 3.10, ‖χ‖∞ depends only on cφ, we conclude

that C2 depends only on p, |φ|η and cφ. �



Chapter 4

An example

Here we give an example of a diffeomorphism f of the two-dimensional torus T2 = R2/Z2

with a GMY structure Λ having polynomial decay for the Lebesgue measure of the tail of

the return time. As a consequence, we deduce that f satisfies the results on polynomial

decay of correlations and large deviations from Section 1.2 and 1.3.

We start with an orientation preserving C2 Anosov diffeomorphism f0 of T2 and we

consider a finite Markov partition W0, . . . ,Wd for f0 such that the fixed point (0, 0) belongs

to the interior of W0. Considering the hyperbolic decomposition into stable and unstable

sub-bundles TM = Es ⊕ Eu, we assume that there is 0 < λ < 1 such that

‖Df |Es‖ < λ and ‖Df−1|Eu‖ < λ.

We assume moreover that the transition matrix A of f0 is aperiodic, i.e. some power of A

having all entries strictly positive. By a suitable change of coordinates we can suppose that

f0(a, b) =
(
φ0(a), ψ0(b)

)
for all (a, b) ∈ W0, the local stable manifold of (0, 0) is {a = 0}, the

local unstable manifold of (0, 0) is {b = 0} and both φ0 and ψ0 are orientation preserving.

Now we consider f : T2 → T2, a perturbation of f0 that coincides with f0 out of W0 and

f(a, b) =
(
φ(a), ψ(b)

)
for (a, b) ∈ W0. For definiteness we assume that W0 = [a′0, a0]×[b′0, b0]

and consider V0 = [φ−1
0 (a′0), φ−1

0 (a0)]× [ψ0(b′0), ψ0(b0)]. Observe that V0 is a neighborhood

of (0, 0) strictly contained in W0. We assume that for some 0 < θ < 1 we have

φ(a) = a(1 + aθ) and ψ(b) = φ−1(b) ∀(a, b) ∈ V0,

and assume that φ and ψ coincide respectively with φ0 and ψ0 in W0 \ V0. Note that φ
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is the so-called intermittent map of the type considered in [22, Section 6.2] and (0, 0) is a

fixed point of f with φ′(0) = 1 = ψ′(0).

Observe that as we have not modified the geometric structure of f0, then the set W1 is

completely foliated by a set Γs of stable leaves and a set Γu of unstable leaves. Our goal

now is to prove that f satisfies the properties (P1)-(P5) on the set Λ = W1 (any other

Wi 6= W0 would be fine) and that we have recurrence times with polynomial decay to some

unstable leaf on W1, thus being in the conditions of Theorems A and B. As a consequence

we obtain the following results.

Theorem 4.1. Let f be as above and take ϕ, ψ ∈ Hη. Then, f has a physical measure µ

and there exists C2 > 0 such that for every n ≥ 1,

1. if η > 1
θ+1

, then Cn(ϕ, ψ, µ) ≤ C2

n1/θ
;

2. if η ≤ 1
θ+1

, then Cn(ϕ, ψ, µ) ≤ C2

n(1+1/θ)η
.

Theorem 4.2. Let f be as above. There are η0 > 0 and ζ0 = ζ0(η0) > 1 such that for all

η > η0, 1 < ζ < ζ0, ε > 0, p > 1/θ and φ ∈ Hη, there exists C2 > 0 such that for every

n ≥ 1

LD(φ, ε, n, µ) ≤ C2

ε2p

1

n1/θ
.

We consider the sequences (an)n and (a′n)n defined recursively for n ≥ 1 as

an = φ−1(an−1) and a′n = φ−1(a′n−1).

For all n≥ 0, set

Jn = [an+1, an]× [b′0, b0] and J ′n = [a′n, a
′
n+1]× [b′0, b0].

Observe that these sets form a (lebesgue mod 0) partition of W0. Setting for i = 1, . . . , k

and n ≥ 0

R̂|Wi
= 1, R̂|Jn = n+ 1 and R̂|J ′n = n+ 1,

define

R̂1 = R̂− 1 + n0, R̂i = R̂i−1 + (R̂− 1) ◦f R̂i−1 + n0 for i ≥ 2

and, for x ∈ W1, let R(x) be equal to the smallest R̂i such that f R̂i(x) ∈ W1. Note that as

we are assuming the transition matrix of f0 (and thus of f) with respect to the partition

W0, . . . ,Wk to be aperiodic, then R is well defined.
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4.1 Invariant manifolds

Here we prove that the manifolds in Γs and Γu satisfy (P2) and (P3). We start by proving

some useful estimates about the map φ. It follows from the results in the beginning of [22,

Section 6.2] that (an)n and (a′n)n have the same asymptotics of the sequence 1/n1/θ. In

particular, there is C > 0 such that for all n ≥ 1 we have

∆an := an − an+1 ≤
C

n1+1/θ
, (4.1)

and a similar estimate holds for (a′n)n. For the sake of notational simplicity we shall

consider τ = 1/θ.

Lemma 4.3. There exists C > 0, such that for all n ≥ 0 and all x ∈ [an+1, an], we have

|(φn)′(x)| ≥ Cnτ+1.

Proof. By the definition of an, we have

|φn(an)− φn(an+1)| = |a0 − a1|

and so, using the Mean Value Theorem and (4.1), we get, for some ξ ∈ [an+1, an],

|(φnu)′(ξk)| =
∆a0

∆an
≥ Cnτ+1.

Using the previous lemma for a = ξ and any b ∈ [an+1, an], we obtain the same conclusion

for any point in [an+1, an], concluding the proof.

To simplify notation, we write f ′u to mean the derivative of f in the unstable direction.

Proposition 4.4. There exists C > 0 such that

(a) for all n ∈ N and x, y ∈ γu ∈ Γu we have

d(f−n(x), f−n(y)) ≤ C

nτ+1
d(x, y);

(b) for all n ∈ N and x, y ∈ γs ∈ Γs we have

d(fn(x), fn(y)) ≤ C

nτ+1
d(x, y).
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Proof. We shall prove (a). The proof of (b) follows similar arguments.

Consider x, y ∈ γu and let n ∈ N. We first assume that the orbits of x and y visit W0

exactly at the same moments. Then, it is enough to prove that there is C > 0 such that

for a given point z ∈ T 2 we have

|(f−nu )′(z)| ≤ C

nτ+1
.

Let K = {j ∈ N, 0 ≤ j ≤ n : f−j(x) ∈ W0} and M = {0, . . . , n} \K. The set K can be

written as K = ∪ki=1Ki, where

Ki = {−ki, . . . ,−ki + pi | − ki − 1 6∈ K, −ki + pi + 1 6∈ K}.

Analogously, we write M = ∪mi=1Mi, where

Mi = {−mi, . . . ,−mi + qi | −mi − 1 6∈M, −mi + qi + 1 6∈M}.

Considering P =
∑k

i=1 pi and Q =
∑k

i=1 qi, we have P +Q = n.

Note that, since ki+pi ∈ K and ki+pi+1 6∈ K , then fki+pi(x) ∈ J0. Since we assumed

that the orbits of x and y visit W0 exactly at the same moments, then fki+pi(x) ∈ J0.

Observe that f coincides with φ in K ∩ γu. Using the Mean Value Theorem and Lemma

4.3 we get, for some ξ ∈ J0,

d(f−ki(x), f−ki(y)) ≤ (φ−pi)′(ξ)d(f−ki+pi(x), f−ki+pi(y)) ≤ C

pτ+1
i

d(f−ki+pi(x), f−ki+pi(y)).

(4.2)

For the iterates m ∈M we have f−m(x) /∈ W0, and so the behavior of (fu)
′ is the same

of the unperturbed Anosov case. In particular, there is exponential backward contraction:

there is λ > 1 such that

d(f−m(x), f−m(y)) ≤ λd(f−(m−1)(x), f−(m−1)(y)). (4.3)

Gathering (4.2) and (4.3), we obtain, for any n ∈ N,

d(f−n(x), f−n(y)) ≤ λQ
k∏
i=1

C

pτ+1
i

d(x, y).

Now it is enough to prove that
k∏
i=1

C

pτ+1
i

≤ C

P τ+1
. (4.4)
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We have for each i
C

pτ+1
i

=

(
pi

C
1
τ+1

)−τ−1

.

With no loss of generality, we may assume that each pi/C
1
τ+1 ≥ 2. Actually, if this were

not the case we would have the pi’s uniformly bounded, meaning that the corresponding

pi iterates would be uniformly bounded away from the stable leaf of (0, 0). In particular,

there would be some 0 < λ0 < 1 such that |(f−1
u )′| ≤ λ0 and this case could be treated as

the case of the previous case with λ0 playing the role of λ.

Let us now prove (4.4) under the assumption that pi/C
1
τ+1 ≥ 2 for each 1 ≤ i ≤ k.

This in particular implies that

k∏
i=1

pi

C
1
τ+1

≥
k∑
i=1

pi

C
1
τ+1

.

Using this we get

k∏
i=1

C

pτ+1
i

=

(
k∏
i=1

C
1
τ+1

pi

)τ+1

≤

(
k∑
i=1

C
1
τ+1

pi

)τ+1

=

(
C

1
τ+1

P

)τ+1

=
C

P τ+1
,

thus proving (4.4).

Let us finally consider the case where the orbits of x and y do not visit W0 at the

same moments. Assume that there is j ≤ n such that f j(x) ∈ J ∪ J ′ and f j(y) /∈ J ∪ J ′.
Choosing the size of the rectangle W1 sufficiently small (and thus the length of γu(x)),

we may assure that we necessarily have f j(x) (uniformly) bounded away from γs(0, 0). In

particular, there is some λ0 such that |f ′u| ≥ λ0, and so we may repeat the calculations

above we λ0 playing the role of λ.

4.2 Bounded distortion

Here we prove the bounded distortion property (P4).

The following lemma is proved in [22, Lemma 5].

Lemma 4.5. There exists C > 0 such that, for all i, n ∈ N with i ≤ n, and for all

a, b ∈ [an+1, an],

log
(φi)′(a)

(φi)′(b)
≤ C
|φi(a)− φi(b)|

∆an−i
≤ C.



50 An example

Lemma 4.6. There exists C > 0 and 0 < β < 1 such that for all x, y ∈ γu ∈ Γu we have

d(x, y) ≤ Cβs(x,y).

Proof. We will start by showing that there exists 0 < β < 1 such that, for x, y ∈ Λ ∩ γu

with s(x, y) 6= 0, we have d(x, y) ≤ β d(fR(x), fR(y)). In fact, since fR(x), fR(y) 6∈ W0

and f behaves like an Anosov diffeomorphism outside W0, then

d(fR−1(x), fR−1(y)) ≤ β d(fR(x), fR(y)) for some 0 < β < 1

and so d(x, y) ≤ β d(fR(x), fR(y)).

Applying this inequality successively, we obtain

d(x, y) ≤ β d(fR(x), fR(y)) ≤ · · · ≤ βs d(
(
fR
)s

(x),
(
fR
)s

(y)) ≤ Cβs(x,y),

where C is the diameter of M .

Proposition 4.7. For γ ∈ Γu and x, y ∈ Λ ∩ γ,∣∣∣∣∣log

(
fRu
)′

(x)(
fRu
)′

(y)

∣∣∣∣∣ ≤ Cβs(f
R(x),fR(y)).

Proof. Let γ ∈ Γu and x, y ∈ Λ ∩ γ. We have∣∣∣∣log
(fRu )′(x)

(fRu ))′(y)

∣∣∣∣ ≤ R−1∑
j=0

| log f ′u(f
jx)− log f ′u(f

jy)|. (4.5)

As in Proposition 4.4, without loss of generality we may assume that the orbits of x and y

visit W0 exactly at the same moments. Let K = {j ∈ N0, 0 ≤ j ≤ R − 1 : f j(x) ∈ W0}
and M = {0, . . . , R} \K. The set K can be written as K = ∪ki=1Ki, where

Ki = {ki, . . . , ki + pi | ki − 1 6∈ K, ki + pi + 1 6∈ K}.

Analogously we can write M = ∪mi=1Mi, where

Mi = {mi, . . . ,mi + qi |mi − 1 6∈M, mi + qi + 1 6∈M}.

We will consider now the terms of the right hand side of (4.5) which belong to some Ki.

Note that, since ki + pi ∈ K and ki + pi + 1 6∈ K, then fki+pi ∈ J0. From Lemma 4.5,

pi−1∑
j=0

| log f ′u(f
ki+jx)− log f ′u(f

ki+jy)| ≤ C1d(fki+pix, fki+piy).
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So, adding the term j = pi, we obtain

pi∑
j=0

| log f ′u(f
ki+jx)− log f ′u(f

ki+jy)| ≤ Cd(fki+pix, fki+piy),

because there exists ξ ∈ J0 such that

| log f ′u(f
ki+pix)− log f ′u(f

ki+piy)| =
∣∣∣∣f ′′u (ξ)

f ′u(ξ)

∣∣∣∣ d(fki+pix, fki+piy).

Let us now consider the terms belonging to some Mi. Since f is of class C2 outside W0,

using the Mean Value Theorem and the fact that f is uniformly expanding on unstable

leaves, we have, for x ∈Mi,

qi∑
j=0

| log f ′u(f
mi+jx)− log f ′u(f

mi+jy)| ≤ C3

qi∑
j=0

d(fmi+jx, fmi+jy)

≤ C3

qi∑
j=0

βqi−j+1d(fmi+qix, fmi+qiy) ≤ Cd(fmi+qix, fmi+qiy).

Gathering the conclusions we obtained for K and M , using Proposition 4.4-(a),

∑
p∈K∪L∪M

| log f ′u(f
px)− log f ′u(f

py)| ≤C
( k∑
i=0

d(fki+pix, fki+piy) +
m∑
i=0

d(fmi+qix, fmi+qiy)
)

≤C
( k∑
i=0

1
(R−ki−pi)τ+1 +

m∑
i=0

1
(R−mi−qi)τ+1

)
d(fRx, fRy)

≤C ′d((fR)x, (fR)y),

and so, ∣∣∣∣∣log

(
fRu
)′

(x)(
fRu
)′

(y)

∣∣∣∣∣ ≤ C ′d((fR)x, (fR)y). (4.6)

Applying Lemma 4.6, we have d((fR)x, (fR)y) ≤ C2β
s(fR(x),fR(y)) for some C2 > 0, thus

concluding the proof.

4.3 Regularity of the stable foliation

To prove property (P5)-(a), we follow the ideas in [3, Section 3.5]. The proof of the following

lemma can be found in [11, Theorem 3.3.].
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Lemma 4.8. Let N and P be manifolds, where P has finite volume, and, for every n ∈ N,

let Θn : N → P be an absolutely continuous map with Jacobian Jn. If we assume that

(a) Θn converges uniformly to an injective continous map Θ : N → P ,

(b) Jn converges uniformly to an integrable continous map J : N → R,

then Θ is absolutely continuous with Jacobian J .

Until the end of this section we denote Θ = Θγ′,γ(x) to simplify the notation. The next

lemma can be found in [3, Lemma 3.11] and it is a consequence of [11, Lemma 3.8].

Lemma 4.9. Given γ, γ′ ∈ Γu and Θ : γ′ → γ, then, for every n ∈ N, there exists an

absolutely continous function πn : fn(γ′)→ fn(γ) with Jacobian Gn such that

(a) lim
n→∞

sup
x∈γ

{
dfn(γ′)

(
fn(x), fn(Θ(x))

)}
= 0;

(b) lim
n→∞

sup
x∈fn(γ)

{∣∣1−Gn(x)
∣∣} = 0.

Lemma 4.10. There exists C > 0 such that for all x, y ∈ γs ∈ Γs and n ∈ N we have

log
∞∏
i=n

det Df(f i(x))

det Df(f i(y))
≤ C

nτ
.

Proof. Note that

log
∞∏
i=n

det Df(f i(x))

det Df(f i(y))
≤

∞∑
i=n

∣∣ log
(

det Df(f i(x))
)
− log

(
det Df(f i(y))

)∣∣.
We now need to control each term of the above sum. We divide this in three cases.

Assume first that f i(x), f i(y) ∈ W0. Since f i(y) ∈ γs(f i(x)) and f has a product form

in W0, then
∣∣ log

(
det Df(f i(x))

)
− log

(
det Df(f i(y))

)∣∣ = 0.

Assume now that f i(x), f i(y) 6∈ W0. As f behaves like an Anosov diffeomorphism

outside W0, then log detDf is Lipschitz. So, using the polynomial contraction on stable

leaves, we get∣∣ log
(

det Df(f i(x))
)
− log

(
det Df(f i(y))

)∣∣ ≤ C1d(f i(x), f i(y)) ≤ C2

iτ+1
.
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Finally, for f i(x) ∈ W0 and f i(y) 6∈ W0, choose the point z in the same stable leaf as

f i(x) such that z is in the boundary of W0 and between f i(x) and f i(y). Then, applying

the first case to f i(x) and z, and the second case to z and f i(y), we obtain the conclusion.

Adding all the terms, we conclude that

∞∑
i=n

∣∣ log
(

det Df(f i(x))
)
− log

(
det Df(f i(y))

)∣∣ ≤ C3

∞∑
i=n

1

iτ+1
≤ C

nτ
.

We define, for n ∈ N, the map Θn : γ′ → γ as Θn = f−Rn ◦πRn ◦fRn . Note that Θn is

absolutely continuous, its Jacobian is

Jn(x) =
| det(DfRn)(x)|
| det(DfRn)Θn(x)|

GRn(fRn(x))

and the Jacobian of Θ is given by

J(x) =
d(Θ∗ Lebγ)

dLebγ′
.

Proposition 4.11. For γ′, γ ∈ Γu, the function Θ is absolutely continuous and its Jacobian

is given by

J(x) =
∞∏
i=0

det Df(f i(x))

det Df(f i(Θ(x)))
.

Note that Lemma 4.10 implies that the product in the above proposition is finite. The

proof of this proposition is a direct consequence of the following lemma together with

Lemma 4.8.

Lemma 4.12. The functions Θn converge uniformly to Θ and their Jacobians Jn converge

uniformly to J .

Proof. Using (P3), we have, for x ∈ γ,

dγ(Θn(x),Θ(x)) = dγ(f
−RnπRnf

Rn(x), f−RnfRnΘ(x)) ≤ C
(Rn)τ+1dfRn (γ)(πRnf

Rn(x), fRnΘ(x))

and, since Rn →
n
∞ and dfRn (γ)(πRnf

Rn(x), fRnΘ(x)) is bounded, then the uniform con-

vergence follows.
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We write

Jn(x) =
| det(DfRn)(x)|
| det(DfRn)Θ(x)|

| det(DfRn)Θ(x)|
| det(DfRn)Θn(x)|

GRn(fRn(x)),

By Lemma 4.9, GRn(fRn(x)) converges uniformly to one. To control the second factor note

that, by (4.6) applied to the point Θ(x) and Θn(x), we have∣∣∣∣log
| det(DfRn)Θ(x)|
| det(DfRn)Θn(x)|

∣∣∣∣ ≤ CdfRn (γ′)(f
Rn(Θ(x), fRn(Θn(x)).

So,

| det(DfRn)Θ(x)|
| det(DfRn)Θn(x)|

→
n

1.

We are left to prove that the first factor converges uniformly to J . Notice that

log
| det(DfRn)(x)|
| det(DfRn)Θ(x)|

=
Rn∑
i=0

log
det Df(f i(x))

det Df(f i(Θ(x)))

and so

log J(x)− log
| det(DfRn)(x)|
| det(DfRn)Θ(x)|

=
∞∑

Rn+1

log
det Df(f i(x))

det Df(f i(Θ(x)))
,

which converges uniformly to zero, by Lemma 4.10.

The next proposition proves (P5)-(b).

Proposition 4.13. For each γ, γ′ ∈ Γu, the map Θ is absolutely continuous and denoting

u(x) =
d(Θ∗ Lebγ′)

dLebγ
(x),

we have

log
u(x)

u(y)
≤ Cβs(x,y), ∀x, y ∈ γ′ ∩ Λ.

Proof. It is known that (P5)-(b) is satisfied by Anosov diffeomorphisms. But f is topolog-

ically conjugate to the Anosov diffeomorphism f0. Since the separation time is invariant

by topological conjugacy, then so is (P5)-(b).
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4.4 Recurrence times

Our goal in this section is to prove that there exists C > 0 such that for all γ ∈ Γu and

n ∈ N we have

Lebγ{R > n} ≤ C

nτ+1
.

Since we have assumed the transition matrix of the initial Markov partition aperiodic, then

there is n0 ∈ N such that for n ≥ n0, fn(Wj) intersects Wk, for all j, k.

Lemma 4.14. For L ∈ {W1, . . . ,Wd, J0, J
′
0}, there exists n0 ∈ N and δ0 > 0 such that, for

all n ≥ n0 and j ∈ {1, . . . , d}, we have

Lebγ
(
f−n(Wj) ∩ L

)
≥ δ0.

Proof. Choosing n0 as in above, we know that, for all n ≥ n0, we have fn(L) intersects Wk,

for all k. Since, in addition, fn(L) must cross the entire length of the unstable direction

of any Wk it intersects, then fn(L) crosses the entire length of the unstable direction of

every Wk. Then

Lebγ(f
−n(Wj) ∩ L)

Lebγ(L)
=

∫
fn(f−n(Wj)∩L)

(f−nu )′dLebγ∫
fn(L)

(f−nu )′dLebγ

=

∫
Wj

(f−nu )′dLebγ∫
∪Wk

(f−nu )′dLebγ

. (4.7)

Let R0 = 0. Choosing k ∈ N0 such that Rk ≤ n < Rk+1, note that (fn−Rku )′(x) ≥ 1 and so,(
fnu
)′

(x) = (fRku )′(fn−Rk(x))(fn−Rku )′(x) ≥ (fRku )′(fn−Rk(x)).

Analogously, since (f
n−Rk+1
u )′(x) ≤ 1, then(

fnu
)′

(x) = (fRk+1
u )′(fn−Rk+1(x))(fn−Rk+1

u )′(x) ≤ (fRk+1
u )′(fn−Rk+1(x)).

Consequently,

1

(f
Rk+1
u )′(fn−Rk+1(y))

≤
(
f−nu

)′
(y) ≤ 1

(fRku )′(fn−Rk(y))
. (4.8)

Applying (P4), there exists C > 0 such that, for all m ∈ N,

e1/C ≤
(
fRmu

)′
(z)(

fRmu
)′

(w)
≤ eC .
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Fixing w0 we have

(fRku )′(fn−Rk(y)) ≥ e1/C
(
fRku
)′

(w0) and (fRk+1
u )′(fn−Rk+1(y)) ≤ eC

(
fRk+1
u

)′
(w0).

Then, from (4.7), (4.8) and the previous inequalities, we obtain

Lebγ(f
−n(Wj) ∩ L)

Lebγ(L)
≥

∫
Wj

1

(f
Rk+1
u )′(fn−Rk+1)

dLebγ∫
∪Wk

1

(fRku )′(fn−Rk)
dLebγ

≥

1

eC
(
f
Rk+1
u

)′
(w0)

Lebγ(Wj)

1

e1/C
(
fRku
)′

(w0)
Lebγ(∪Wk)

=
e1/C

eC
(
fRu
)′

(w0)

(
fRku
)′

(w0)(
fRku
)′

(fR(w0))

Lebγ(Wj)

Lebγ(∪Wk)
≥ e2/C

eC
(
fRu
)′

(w0)

Lebγ(Wj)

Lebγ(∪Wk)
,

using (P4) in the last step. Finaly,

Lebγ(f
−n(Wj) ∩ L) ≥ e2/C Lebγ(L)

eC
(
fRu
)′

(w0) Lebγ(∪Wk)
min

j=1,...,d
{Lebγ(Wj)} = δ0.

Define the σ-algebra

Bi =

R̂i−1∨
j=0

f−jA.

Lemma 4.15. There exists ε0 > 0 such that, for all i ∈ N and all ω ∈ Bi with R|ω > R̂i−1,

Lebγ
{
R = R̂i |ω

}
≥ ε0.

Proof. Fix i ∈ N and let ω ∈ Bi be such that R|ω > R̂i−1. It follows from the definition of

Bi that f R̂i−1ω ∈ A. Set n = R̂i−1 + (R̂ − 1) ◦f R̂i−1 . If f R̂i−1ω = Wl, for some l 6= 0, since

(R̂−1)Wl = Wl, then fnWl = Wl. If f R̂i−1ω = Jl, for some l ∈ N0, since (R̂−1)Jl = J0, then

fnJl = J0 (analogously, fnJ ′l = J ′0). So, we proved that fnω = L ∈
{
W1, . . . ,Wd, J0, J

′
0

}
.

Calling A = L ∩ f−n0Wk and noting that R̂i(x) = n+ n0, we have

B =
{
x ∈ ω : R(x) = R̂i(x)

}
={x ∈ ω : fn+n0(x) ∈ Wk

}
={x ∈ f−nL : x ∈ f−(n+n0)Wk

}
= f−n(A).

From Lemma 4.14, we know that Lebγ(A) ≥ δ0 > 0. We are left to prove that Lebγ(f
−n(A)) ≥

ε0. But, if we prove that
(
f−nu

)′
|A
≥ δ1 > 0, then we get

Lebγ(f
−n(A)) =

∫
A

(
f−nu

)′
dLebγ ≥ δ1 δ0 = ε0.
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To prove that
(
f−nu

)′
|A
≥ δ1 > 0, we only need to find an upper bound for (fnu )′ in B.

If z ∈ A then z = fn(x), for some x ∈ B and R(x) = R̂i(x) = n+ n0. So,

(fnu )′(x) =
(
f−n0 ◦fR(x)

u

)′
(x) =

(
f−n0
u

)′
(fR(x))

(
fRu
)′

(x).

Since n0 is fixed and
(
f−n0
u

)′
is a continuous function with a compact domain, then

(
f−n0
u

)′
has an upper bound. So, we only need to control

(
fRu
)′

in B. Using (4.6), there exists a

constant C > 0 such that, for x, y ∈ L,∣∣∣∣∣log

(
fRu
)′

(x)(
fRu
)′

(y)

∣∣∣∣∣ ≤ Cd(fR(x), fR(y))

and so ∣∣∣∣∣
(
fRu
)′

(x)(
fRu
)′

(y)

∣∣∣∣∣ ≤ eC diam(M).

Fixing y0 ∈ L, we get ∣∣(fRu )′(x)
∣∣ ≤ eC diam(M)

∣∣(fRu )′(y0)
∣∣ = C1,

concluding the proof.

Lemma 4.16. For all i, n ∈ N and all ω ∈ Bi,

Lebγ
{
R̂i+1 − R̂i > n0 + n |ω

}
≤ Lebγ

{
R̂ > n

}
.

Proof. Let A =
{
x ∈ ω : R̂i+1(x)− R̂i(x) > n0 +n

}
. For x ∈ A we have (R̂− 1)(f R̂i(x)) =

R̂i+1(x)− R̂i(x)− n0 > n. Then f R̂i(A) ⊆
⋃
k≥n+2(Jk ∪ J ′k). So

A ⊆ f−R̂i
( ⋃
k≥n+2

(Jk ∪ J ′k)
)
⊆ f−R̂i

{
R̂ > n

}
and, as (f−R̂iu )′ ≤ 1, then

Lebγ(A) ≤ Lebγ
(
f−R̂i

{
R̂ > n

})
=

∫
{R̂>n}

(
f−R̂iu

)′
dLebγ ≤ Lebγ{R̂ > n}.

In the proof of the next result we use ideas from [22, Section 4.1] and [2, Section A.2.1].
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Proposition 4.17. There exists C > 0 such that, for sufficiently large n,

Lebγ{R > n} ≤ C

nτ+1
.

Proof. We start by noting that

Lebγ{R̂ > n} = Lebγ
(⋃
i≥n

(Ji ∪ J ′i)
)

= Lebγ([0, an] ∪ [a′n, 0]) ≤ C

nτ+1
. (4.9)

Defining R̂0 = 0, observe that Lebγ{R > n} = (I) + (II), where

(I) =
∑

i≤ 1
2

[
n
n0

] Lebγ{R > n; R̂i−1 ≤ n < R̂i},

(II) = Lebγ
{
R > n;n ≥ R̂ 1

2

[
n
n0

]}.
First we will see that there exists ε0 > 0 and C > 0, a constant depending on f , but not

on n, such that

(II) ≤ C(1− ε0)
1
2

[
n
n0

]
.

In fact, taking n ≥ 4n0, and so 1
2

[
n
n0

]
≥ 2, we have

(II) = Lebγ
{
R > n;n ≥ R̂ 1

2

[
n
n0

]} ≤ Lebγ
{
R ≥ R̂ 1

2

[
n
n0

]}
= Lebγ{R > R̂2} Lebγ{R > R̂3 | R > R̂2} · · · Lebγ

{
R > R̂ 1

2

[
n
n0

] | R > R̂ 1
2

[
n
n0

]
−1

}
≤ C(1− ε0)

1
2

[
n
n0

]
, applying Lemma 4.15 to each factor. (4.10)

We will now focus on (I). Let k ≥ 2n0. By (4.9),

Lebγ
{
R̂ > n

i
− n0

}
≤ C

(n
i
− n0)τ+1

≤ C1

(
i

n0

)τ+1

, ∀i ≤ 1
2

[
n
n0

]
. (4.11)

Fixing i, we have

Lebγ

{
R > n | R̂i−1 ≤ n < R̂i

}
≤ Lebγ

{
R > R̂i−1;n < R̂i

}
≤

i∑
j=1

Lebγ

{
R > R̂i−1; R̂j − R̂j−1 >

n
i

}
. (4.12)

The last inequality is true because there exists j ≤ i such that R̂j−R̂j−1 >
n
i
. In fact, if we

assume the opposite, then n
i
i ≥

∑i
j=1

(
R̂j−R̂j−1

)
= R̂i, which contradicts the assumption.
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We will now prove that each term of the sum (4.12) is less then or equal to C(1−ε0)i i
τ+1

nτ+1 .

Considering first the case i, j ≥ 2, define

a = Lebγ
{
R > R̂2

}
Lebγ

{
R > R̂3 | R > R̂2

}
· · · Lebγ

{
R > R̂j−2 | R > R̂j−3

}
,

b = Lebγ
{
R > R̂j−1; R̂j − R̂j−1 >

n
i
| R > R̂j−2

}
,

c = Lebγ
{
R > R̂j | R > R̂j−1; R̂j − R̂j−1 >

n
i

}
· · ·m

{
R > R̂i−1 | R > R̂i−2; R̂j − R̂j−1 >

n
i

}
,

where if j = 2 or j = 3 we take a = 1 and if j = i we take c = 1. Note that

Lebγ

{
R > R̂i−1; R̂j − R̂j−1 >

n
i

}
= a · b · c.

Applying Lemma 4.15 to each factor in a, we get a ≤ (1− ε0)j−1. Each factor in c is of the

form Lebγ
{
R > R̂k | R > R̂k−1; R̂j− R̂j−1 >

n
i

}
with j ≤ k < i. Using again Lemma 4.15,

we conclude that c ≤ (1− ε0)i−j. Using Lemma 4.16 and (4.11), we get

b ≤ Lebγ
{
R̂j − R̂j−1 >

n
i
|R > R̂j−2

}
≤ Lebγ

{
R̂ > n

i
− n0

}
≤ C

( i
n

)τ+1

.

Gathering all the estimates above we get

(I) ≤
∑

i≤ 1
2

[
n
n0

]a·b·c ≤= C
∑

i≤ 1
2

[
n
n0

](1−ε0)i−1
( i
n

)τ+1

≤ C

nτ+1

∞∑
i=1

(1−ε0)i−1iτ+1 =
C1

nτ+1
. (4.13)

For the term i = 1 of (I), we have, by the definition of R̂1,

Lebγ{R > R̂0; R̂0 < n < R̂1} ≤Lebγ{R̂1 > n} = Lebγ{R̂ > n− n0 + 1}

= Lebγ

( ⋃
k≥n−n0+1

(Jk ∪ J ′k)
)

= Lebγ([0, an−n0+1] ∪ [a′n−n0+1, 0])

≤ C

(n− n0 + 1)τ+1
≤ C1

nτ+1
,

for any n ≥ n1, with n1 sufficiently large. For i ≥ 2 and j = 1, considering each term of

the sum in (4.12),

Lebγ
{
R >R̂i−1; R̂1 − R̂0 >

n
i

}
≤ Lebγ

{
R̂1 − R̂0 >

n

i

}
Lebγ

{
R > R̂1|R̂1 − R̂0 >

n

i

}
·

· Lebγ
{
R > R̂2|R > R̂1; R̂1 − R̂0 >

n

i

}
· · ·Lebγ

{
R > R̂i−1|R > R̂i−2; R̂1 − R̂0 >

n

i

}
≤ C(1− ε0)i−1,
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arguing as we did to estimate c in the general case. Finally, from (4.10), (4.13) and the

calculations for the small terms, we have, for sufficiently large n,

(I) + (II) ≤ C1

nτ+1
+ C(1− ε0)

1
2

[
n
n0

]
≤ C2

nτ+1
.
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